Metamath Proof Explorer


Theorem ichnreuop

Description: If the setvar variables are interchangeable in a wff, there is never a unique ordered pair with different components fulfilling the wff (because if <. a , b >. fulfils the wff, then also <. b , a >. fulfils the wff). (Contributed by AV, 27-Aug-2023)

Ref Expression
Assertion ichnreuop ( [ 𝑎𝑏 ] 𝜑 → ¬ ∃! 𝑝 ∈ ( 𝑋 × 𝑋 ) ∃ 𝑎𝑏 ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) )

Proof

Step Hyp Ref Expression
1 notnotb ( ∃ 𝑎𝑏 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ↔ ¬ ¬ ∃ 𝑎𝑏 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) )
2 nfv 𝑐 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 )
3 nfv 𝑑 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 )
4 nfv 𝑎𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑
5 nfv 𝑎 𝑐𝑑
6 nfsbc1v 𝑎 [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑
7 4 5 6 nf3an 𝑎 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 )
8 nfv 𝑏𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑
9 nfv 𝑏 𝑐𝑑
10 nfcv 𝑏 𝑐
11 nfsbc1v 𝑏 [ 𝑑 / 𝑏 ] 𝜑
12 10 11 nfsbcw 𝑏 [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑
13 8 9 12 nf3an 𝑏 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 )
14 opeq12 ( ( 𝑎 = 𝑐𝑏 = 𝑑 ) → ⟨ 𝑎 , 𝑏 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ )
15 14 eqeq2d ( ( 𝑎 = 𝑐𝑏 = 𝑑 ) → ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ↔ ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ) )
16 simpl ( ( 𝑎 = 𝑐𝑏 = 𝑑 ) → 𝑎 = 𝑐 )
17 simpr ( ( 𝑎 = 𝑐𝑏 = 𝑑 ) → 𝑏 = 𝑑 )
18 16 17 neeq12d ( ( 𝑎 = 𝑐𝑏 = 𝑑 ) → ( 𝑎𝑏𝑐𝑑 ) )
19 sbceq1a ( 𝑏 = 𝑑 → ( 𝜑[ 𝑑 / 𝑏 ] 𝜑 ) )
20 sbceq1a ( 𝑎 = 𝑐 → ( [ 𝑑 / 𝑏 ] 𝜑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) )
21 19 20 sylan9bbr ( ( 𝑎 = 𝑐𝑏 = 𝑑 ) → ( 𝜑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) )
22 15 18 21 3anbi123d ( ( 𝑎 = 𝑐𝑏 = 𝑑 ) → ( ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ↔ ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) ) )
23 2 3 7 13 22 cbvex2v ( ∃ 𝑎𝑏 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ↔ ∃ 𝑐𝑑 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) )
24 vex 𝑥 ∈ V
25 vex 𝑦 ∈ V
26 24 25 opth ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ↔ ( 𝑥 = 𝑐𝑦 = 𝑑 ) )
27 eleq1w ( 𝑦 = 𝑑 → ( 𝑦𝑋𝑑𝑋 ) )
28 27 biimpcd ( 𝑦𝑋 → ( 𝑦 = 𝑑𝑑𝑋 ) )
29 28 adantl ( ( 𝑥𝑋𝑦𝑋 ) → ( 𝑦 = 𝑑𝑑𝑋 ) )
30 29 adantl ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( 𝑦 = 𝑑𝑑𝑋 ) )
31 30 com12 ( 𝑦 = 𝑑 → ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → 𝑑𝑋 ) )
32 31 adantl ( ( 𝑥 = 𝑐𝑦 = 𝑑 ) → ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → 𝑑𝑋 ) )
33 26 32 sylbi ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ → ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → 𝑑𝑋 ) )
34 33 3ad2ant1 ( ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) → ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → 𝑑𝑋 ) )
35 34 impcom ( ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) ) → 𝑑𝑋 )
36 eleq1w ( 𝑥 = 𝑐 → ( 𝑥𝑋𝑐𝑋 ) )
37 36 biimpcd ( 𝑥𝑋 → ( 𝑥 = 𝑐𝑐𝑋 ) )
38 37 adantr ( ( 𝑥𝑋𝑦𝑋 ) → ( 𝑥 = 𝑐𝑐𝑋 ) )
39 38 adantl ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( 𝑥 = 𝑐𝑐𝑋 ) )
40 39 com12 ( 𝑥 = 𝑐 → ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → 𝑐𝑋 ) )
41 40 adantr ( ( 𝑥 = 𝑐𝑦 = 𝑑 ) → ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → 𝑐𝑋 ) )
42 26 41 sylbi ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ → ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → 𝑐𝑋 ) )
43 42 3ad2ant1 ( ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) → ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → 𝑐𝑋 ) )
44 43 impcom ( ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) ) → 𝑐𝑋 )
45 eqidd ( ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) ) → ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑐 ⟩ )
46 necom ( 𝑐𝑑𝑑𝑐 )
47 46 biimpi ( 𝑐𝑑𝑑𝑐 )
48 47 3ad2ant2 ( ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) → 𝑑𝑐 )
49 48 adantl ( ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) ) → 𝑑𝑐 )
50 dfich2 ( [ 𝑎𝑏 ] 𝜑 ↔ ∀ 𝑐𝑑 ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ↔ [ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑 ) )
51 2sp ( ∀ 𝑐𝑑 ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ↔ [ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑 ) → ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ↔ [ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑 ) )
52 sbsbc ( [ 𝑑 / 𝑏 ] 𝜑[ 𝑑 / 𝑏 ] 𝜑 )
53 52 sbbii ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ↔ [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 )
54 sbsbc ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 )
55 53 54 bitri ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 )
56 sbsbc ( [ 𝑐 / 𝑏 ] 𝜑[ 𝑐 / 𝑏 ] 𝜑 )
57 56 sbbii ( [ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑 ↔ [ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑 )
58 sbsbc ( [ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑[ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑 )
59 57 58 bitri ( [ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑[ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑 )
60 51 55 59 3bitr3g ( ∀ 𝑐𝑑 ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ↔ [ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑 ) → ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑[ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑 ) )
61 60 biimpd ( ∀ 𝑐𝑑 ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ↔ [ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑 ) → ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑[ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑 ) )
62 50 61 sylbi ( [ 𝑎𝑏 ] 𝜑 → ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑[ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑 ) )
63 62 adantr ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑[ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑 ) )
64 63 com12 ( [ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 → ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → [ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑 ) )
65 64 3ad2ant3 ( ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) → ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → [ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑 ) )
66 65 impcom ( ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) ) → [ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑 )
67 sbccom ( [ 𝑐 / 𝑏 ] [ 𝑑 / 𝑎 ] 𝜑[ 𝑑 / 𝑎 ] [ 𝑐 / 𝑏 ] 𝜑 )
68 66 67 sylibr ( ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) ) → [ 𝑐 / 𝑏 ] [ 𝑑 / 𝑎 ] 𝜑 )
69 45 49 68 3jca ( ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) ) → ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑐 ⟩ ∧ 𝑑𝑐[ 𝑐 / 𝑏 ] [ 𝑑 / 𝑎 ] 𝜑 ) )
70 nfv 𝑏𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑐
71 nfv 𝑏 𝑑𝑐
72 nfsbc1v 𝑏 [ 𝑐 / 𝑏 ] [ 𝑑 / 𝑎 ] 𝜑
73 70 71 72 nf3an 𝑏 ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑐 ⟩ ∧ 𝑑𝑐[ 𝑐 / 𝑏 ] [ 𝑑 / 𝑎 ] 𝜑 )
74 opeq2 ( 𝑏 = 𝑐 → ⟨ 𝑑 , 𝑏 ⟩ = ⟨ 𝑑 , 𝑐 ⟩ )
75 74 eqeq2d ( 𝑏 = 𝑐 → ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑏 ⟩ ↔ ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑐 ⟩ ) )
76 neeq2 ( 𝑏 = 𝑐 → ( 𝑑𝑏𝑑𝑐 ) )
77 sbceq1a ( 𝑏 = 𝑐 → ( [ 𝑑 / 𝑎 ] 𝜑[ 𝑐 / 𝑏 ] [ 𝑑 / 𝑎 ] 𝜑 ) )
78 75 76 77 3anbi123d ( 𝑏 = 𝑐 → ( ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑏 ⟩ ∧ 𝑑𝑏[ 𝑑 / 𝑎 ] 𝜑 ) ↔ ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑐 ⟩ ∧ 𝑑𝑐[ 𝑐 / 𝑏 ] [ 𝑑 / 𝑎 ] 𝜑 ) ) )
79 10 73 78 spcegf ( 𝑐𝑋 → ( ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑐 ⟩ ∧ 𝑑𝑐[ 𝑐 / 𝑏 ] [ 𝑑 / 𝑎 ] 𝜑 ) → ∃ 𝑏 ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑏 ⟩ ∧ 𝑑𝑏[ 𝑑 / 𝑎 ] 𝜑 ) ) )
80 44 69 79 sylc ( ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) ) → ∃ 𝑏 ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑏 ⟩ ∧ 𝑑𝑏[ 𝑑 / 𝑎 ] 𝜑 ) )
81 nfcv 𝑎 𝑑
82 nfv 𝑎𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑏
83 nfv 𝑎 𝑑𝑏
84 nfsbc1v 𝑎 [ 𝑑 / 𝑎 ] 𝜑
85 82 83 84 nf3an 𝑎 ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑏 ⟩ ∧ 𝑑𝑏[ 𝑑 / 𝑎 ] 𝜑 )
86 85 nfex 𝑎𝑏 ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑏 ⟩ ∧ 𝑑𝑏[ 𝑑 / 𝑎 ] 𝜑 )
87 opeq1 ( 𝑎 = 𝑑 → ⟨ 𝑎 , 𝑏 ⟩ = ⟨ 𝑑 , 𝑏 ⟩ )
88 87 eqeq2d ( 𝑎 = 𝑑 → ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ↔ ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑏 ⟩ ) )
89 neeq1 ( 𝑎 = 𝑑 → ( 𝑎𝑏𝑑𝑏 ) )
90 sbceq1a ( 𝑎 = 𝑑 → ( 𝜑[ 𝑑 / 𝑎 ] 𝜑 ) )
91 88 89 90 3anbi123d ( 𝑎 = 𝑑 → ( ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ↔ ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑏 ⟩ ∧ 𝑑𝑏[ 𝑑 / 𝑎 ] 𝜑 ) ) )
92 91 exbidv ( 𝑎 = 𝑑 → ( ∃ 𝑏 ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ↔ ∃ 𝑏 ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑏 ⟩ ∧ 𝑑𝑏[ 𝑑 / 𝑎 ] 𝜑 ) ) )
93 81 86 92 spcegf ( 𝑑𝑋 → ( ∃ 𝑏 ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑑 , 𝑏 ⟩ ∧ 𝑑𝑏[ 𝑑 / 𝑎 ] 𝜑 ) → ∃ 𝑎𝑏 ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ) )
94 35 80 93 sylc ( ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) ) → ∃ 𝑎𝑏 ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) )
95 vex 𝑑 ∈ V
96 vex 𝑐 ∈ V
97 95 96 opth1 ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ → 𝑑 = 𝑐 )
98 97 equcomd ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ → 𝑐 = 𝑑 )
99 98 necon3ai ( 𝑐𝑑 → ¬ ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ )
100 99 adantl ( ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑 ) → ¬ ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ )
101 eqeq2 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ → ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ↔ ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ) )
102 101 adantr ( ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑 ) → ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ↔ ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ) )
103 100 102 mtbird ( ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑 ) → ¬ ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ )
104 103 3adant3 ( ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) → ¬ ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ )
105 104 adantl ( ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) ) → ¬ ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ )
106 94 105 jcnd ( ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) ) → ¬ ( ∃ 𝑎𝑏 ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) )
107 opeq1 ( 𝑣 = 𝑑 → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑑 , 𝑤 ⟩ )
108 107 eqeq1d ( 𝑣 = 𝑑 → ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ↔ ⟨ 𝑑 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ) )
109 108 3anbi1d ( 𝑣 = 𝑑 → ( ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ↔ ( ⟨ 𝑑 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ) )
110 109 2exbidv ( 𝑣 = 𝑑 → ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ↔ ∃ 𝑎𝑏 ( ⟨ 𝑑 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ) )
111 107 eqeq1d ( 𝑣 = 𝑑 → ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ↔ ⟨ 𝑑 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) )
112 110 111 imbi12d ( 𝑣 = 𝑑 → ( ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ↔ ( ∃ 𝑎𝑏 ( ⟨ 𝑑 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑑 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
113 112 notbid ( 𝑣 = 𝑑 → ( ¬ ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ↔ ¬ ( ∃ 𝑎𝑏 ( ⟨ 𝑑 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑑 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
114 opeq2 ( 𝑤 = 𝑐 → ⟨ 𝑑 , 𝑤 ⟩ = ⟨ 𝑑 , 𝑐 ⟩ )
115 114 eqeq1d ( 𝑤 = 𝑐 → ( ⟨ 𝑑 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ↔ ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ) )
116 115 3anbi1d ( 𝑤 = 𝑐 → ( ( ⟨ 𝑑 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ↔ ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ) )
117 116 2exbidv ( 𝑤 = 𝑐 → ( ∃ 𝑎𝑏 ( ⟨ 𝑑 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ↔ ∃ 𝑎𝑏 ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ) )
118 114 eqeq1d ( 𝑤 = 𝑐 → ( ⟨ 𝑑 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ↔ ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) )
119 117 118 imbi12d ( 𝑤 = 𝑐 → ( ( ∃ 𝑎𝑏 ( ⟨ 𝑑 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑑 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ↔ ( ∃ 𝑎𝑏 ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
120 119 notbid ( 𝑤 = 𝑐 → ( ¬ ( ∃ 𝑎𝑏 ( ⟨ 𝑑 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑑 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ↔ ¬ ( ∃ 𝑎𝑏 ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
121 113 120 rspc2ev ( ( 𝑑𝑋𝑐𝑋 ∧ ¬ ( ∃ 𝑎𝑏 ( ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑑 , 𝑐 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) → ∃ 𝑣𝑋𝑤𝑋 ¬ ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) )
122 35 44 106 121 syl3anc ( ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) ) → ∃ 𝑣𝑋𝑤𝑋 ¬ ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) )
123 rexnal2 ( ∃ 𝑣𝑋𝑤𝑋 ¬ ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ↔ ¬ ∀ 𝑣𝑋𝑤𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) )
124 122 123 sylib ( ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) ∧ ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) ) → ¬ ∀ 𝑣𝑋𝑤𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) )
125 124 ex ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) → ¬ ∀ 𝑣𝑋𝑤𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
126 125 exlimdvv ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( ∃ 𝑐𝑑 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝑐𝑑[ 𝑐 / 𝑎 ] [ 𝑑 / 𝑏 ] 𝜑 ) → ¬ ∀ 𝑣𝑋𝑤𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
127 23 126 syl5bi ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( ∃ 𝑎𝑏 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ¬ ∀ 𝑣𝑋𝑤𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
128 1 127 syl5bir ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( ¬ ¬ ∃ 𝑎𝑏 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ¬ ∀ 𝑣𝑋𝑤𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
129 128 orrd ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( ¬ ∃ 𝑎𝑏 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ∨ ¬ ∀ 𝑣𝑋𝑤𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
130 ianor ( ¬ ( ∃ 𝑎𝑏 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ∧ ∀ 𝑣𝑋𝑤𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) ↔ ( ¬ ∃ 𝑎𝑏 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ∨ ¬ ∀ 𝑣𝑋𝑤𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
131 129 130 sylibr ( ( [ 𝑎𝑏 ] 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ¬ ( ∃ 𝑎𝑏 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ∧ ∀ 𝑣𝑋𝑤𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
132 131 ralrimivva ( [ 𝑎𝑏 ] 𝜑 → ∀ 𝑥𝑋𝑦𝑋 ¬ ( ∃ 𝑎𝑏 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ∧ ∀ 𝑣𝑋𝑤𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
133 ralnex2 ( ∀ 𝑥𝑋𝑦𝑋 ¬ ( ∃ 𝑎𝑏 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ∧ ∀ 𝑣𝑋𝑤𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) ↔ ¬ ∃ 𝑥𝑋𝑦𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ∧ ∀ 𝑣𝑋𝑤𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
134 132 133 sylib ( [ 𝑎𝑏 ] 𝜑 → ¬ ∃ 𝑥𝑋𝑦𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ∧ ∀ 𝑣𝑋𝑤𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
135 eqeq1 ( 𝑝 = ⟨ 𝑥 , 𝑦 ⟩ → ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ↔ ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ) )
136 135 3anbi1d ( 𝑝 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ↔ ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ) )
137 136 2exbidv ( 𝑝 = ⟨ 𝑥 , 𝑦 ⟩ → ( ∃ 𝑎𝑏 ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ↔ ∃ 𝑎𝑏 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ) )
138 eqeq1 ( 𝑝 = ⟨ 𝑣 , 𝑤 ⟩ → ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ↔ ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ) )
139 138 3anbi1d ( 𝑝 = ⟨ 𝑣 , 𝑤 ⟩ → ( ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ↔ ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ) )
140 139 2exbidv ( 𝑝 = ⟨ 𝑣 , 𝑤 ⟩ → ( ∃ 𝑎𝑏 ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ↔ ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ) )
141 137 140 reuop ( ∃! 𝑝 ∈ ( 𝑋 × 𝑋 ) ∃ 𝑎𝑏 ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ↔ ∃ 𝑥𝑋𝑦𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) ∧ ∀ 𝑣𝑋𝑤𝑋 ( ∃ 𝑎𝑏 ( ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) → ⟨ 𝑣 , 𝑤 ⟩ = ⟨ 𝑥 , 𝑦 ⟩ ) ) )
142 134 141 sylnibr ( [ 𝑎𝑏 ] 𝜑 → ¬ ∃! 𝑝 ∈ ( 𝑋 × 𝑋 ) ∃ 𝑎𝑏 ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑎𝑏𝜑 ) )