| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppreqg.o |
|- O = ( oppR ` R ) |
| 2 |
|
oppr2idl.2 |
|- ( ph -> R e. Ring ) |
| 3 |
|
incom |
|- ( ( LIdeal ` R ) i^i ( LIdeal ` O ) ) = ( ( LIdeal ` O ) i^i ( LIdeal ` R ) ) |
| 4 |
1 2
|
opprlidlabs |
|- ( ph -> ( LIdeal ` R ) = ( LIdeal ` ( oppR ` O ) ) ) |
| 5 |
4
|
ineq2d |
|- ( ph -> ( ( LIdeal ` O ) i^i ( LIdeal ` R ) ) = ( ( LIdeal ` O ) i^i ( LIdeal ` ( oppR ` O ) ) ) ) |
| 6 |
3 5
|
eqtrid |
|- ( ph -> ( ( LIdeal ` R ) i^i ( LIdeal ` O ) ) = ( ( LIdeal ` O ) i^i ( LIdeal ` ( oppR ` O ) ) ) ) |
| 7 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 8 |
|
eqid |
|- ( LIdeal ` O ) = ( LIdeal ` O ) |
| 9 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
| 10 |
7 1 8 9
|
2idlval |
|- ( 2Ideal ` R ) = ( ( LIdeal ` R ) i^i ( LIdeal ` O ) ) |
| 11 |
|
eqid |
|- ( oppR ` O ) = ( oppR ` O ) |
| 12 |
|
eqid |
|- ( LIdeal ` ( oppR ` O ) ) = ( LIdeal ` ( oppR ` O ) ) |
| 13 |
|
eqid |
|- ( 2Ideal ` O ) = ( 2Ideal ` O ) |
| 14 |
8 11 12 13
|
2idlval |
|- ( 2Ideal ` O ) = ( ( LIdeal ` O ) i^i ( LIdeal ` ( oppR ` O ) ) ) |
| 15 |
6 10 14
|
3eqtr4g |
|- ( ph -> ( 2Ideal ` R ) = ( 2Ideal ` O ) ) |