| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppreqg.o |
|- O = ( oppR ` R ) |
| 2 |
|
oppr2idl.2 |
|- ( ph -> R e. Ring ) |
| 3 |
|
eqid |
|- ( Base ` O ) = ( Base ` O ) |
| 4 |
|
eqid |
|- ( .r ` O ) = ( .r ` O ) |
| 5 |
|
eqid |
|- ( oppR ` O ) = ( oppR ` O ) |
| 6 |
|
eqid |
|- ( .r ` ( oppR ` O ) ) = ( .r ` ( oppR ` O ) ) |
| 7 |
3 4 5 6
|
opprmul |
|- ( x ( .r ` ( oppR ` O ) ) a ) = ( a ( .r ` O ) x ) |
| 8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 9 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 10 |
8 9 1 4
|
opprmul |
|- ( a ( .r ` O ) x ) = ( x ( .r ` R ) a ) |
| 11 |
7 10
|
eqtr2i |
|- ( x ( .r ` R ) a ) = ( x ( .r ` ( oppR ` O ) ) a ) |
| 12 |
11
|
a1i |
|- ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ a e. i ) /\ b e. i ) -> ( x ( .r ` R ) a ) = ( x ( .r ` ( oppR ` O ) ) a ) ) |
| 13 |
12
|
oveq1d |
|- ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ a e. i ) /\ b e. i ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) = ( ( x ( .r ` ( oppR ` O ) ) a ) ( +g ` R ) b ) ) |
| 14 |
13
|
eleq1d |
|- ( ( ( ( ph /\ x e. ( Base ` R ) ) /\ a e. i ) /\ b e. i ) -> ( ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i <-> ( ( x ( .r ` ( oppR ` O ) ) a ) ( +g ` R ) b ) e. i ) ) |
| 15 |
14
|
ralbidva |
|- ( ( ( ph /\ x e. ( Base ` R ) ) /\ a e. i ) -> ( A. b e. i ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i <-> A. b e. i ( ( x ( .r ` ( oppR ` O ) ) a ) ( +g ` R ) b ) e. i ) ) |
| 16 |
15
|
anasss |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ a e. i ) ) -> ( A. b e. i ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i <-> A. b e. i ( ( x ( .r ` ( oppR ` O ) ) a ) ( +g ` R ) b ) e. i ) ) |
| 17 |
16
|
2ralbidva |
|- ( ph -> ( A. x e. ( Base ` R ) A. a e. i A. b e. i ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i <-> A. x e. ( Base ` R ) A. a e. i A. b e. i ( ( x ( .r ` ( oppR ` O ) ) a ) ( +g ` R ) b ) e. i ) ) |
| 18 |
17
|
3anbi3d |
|- ( ph -> ( ( i C_ ( Base ` R ) /\ i =/= (/) /\ A. x e. ( Base ` R ) A. a e. i A. b e. i ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i ) <-> ( i C_ ( Base ` R ) /\ i =/= (/) /\ A. x e. ( Base ` R ) A. a e. i A. b e. i ( ( x ( .r ` ( oppR ` O ) ) a ) ( +g ` R ) b ) e. i ) ) ) |
| 19 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 20 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 21 |
19 8 20 9
|
islidl |
|- ( i e. ( LIdeal ` R ) <-> ( i C_ ( Base ` R ) /\ i =/= (/) /\ A. x e. ( Base ` R ) A. a e. i A. b e. i ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. i ) ) |
| 22 |
|
eqid |
|- ( LIdeal ` ( oppR ` O ) ) = ( LIdeal ` ( oppR ` O ) ) |
| 23 |
1 8
|
opprbas |
|- ( Base ` R ) = ( Base ` O ) |
| 24 |
5 23
|
opprbas |
|- ( Base ` R ) = ( Base ` ( oppR ` O ) ) |
| 25 |
1 20
|
oppradd |
|- ( +g ` R ) = ( +g ` O ) |
| 26 |
5 25
|
oppradd |
|- ( +g ` R ) = ( +g ` ( oppR ` O ) ) |
| 27 |
22 24 26 6
|
islidl |
|- ( i e. ( LIdeal ` ( oppR ` O ) ) <-> ( i C_ ( Base ` R ) /\ i =/= (/) /\ A. x e. ( Base ` R ) A. a e. i A. b e. i ( ( x ( .r ` ( oppR ` O ) ) a ) ( +g ` R ) b ) e. i ) ) |
| 28 |
18 21 27
|
3bitr4g |
|- ( ph -> ( i e. ( LIdeal ` R ) <-> i e. ( LIdeal ` ( oppR ` O ) ) ) ) |
| 29 |
28
|
eqrdv |
|- ( ph -> ( LIdeal ` R ) = ( LIdeal ` ( oppR ` O ) ) ) |