| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppreqg.o |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
| 2 |
|
oppr2idl.2 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) |
| 4 |
|
eqid |
⊢ ( .r ‘ 𝑂 ) = ( .r ‘ 𝑂 ) |
| 5 |
|
eqid |
⊢ ( oppr ‘ 𝑂 ) = ( oppr ‘ 𝑂 ) |
| 6 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑂 ) ) = ( .r ‘ ( oppr ‘ 𝑂 ) ) |
| 7 |
3 4 5 6
|
opprmul |
⊢ ( 𝑥 ( .r ‘ ( oppr ‘ 𝑂 ) ) 𝑎 ) = ( 𝑎 ( .r ‘ 𝑂 ) 𝑥 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 9 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 10 |
8 9 1 4
|
opprmul |
⊢ ( 𝑎 ( .r ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) |
| 11 |
7 10
|
eqtr2i |
⊢ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) = ( 𝑥 ( .r ‘ ( oppr ‘ 𝑂 ) ) 𝑎 ) |
| 12 |
11
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑏 ∈ 𝑖 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) = ( 𝑥 ( .r ‘ ( oppr ‘ 𝑂 ) ) 𝑎 ) ) |
| 13 |
12
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑏 ∈ 𝑖 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) = ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑂 ) ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ) |
| 14 |
13
|
eleq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ 𝑖 ) ∧ 𝑏 ∈ 𝑖 ) → ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑖 ↔ ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑂 ) ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑖 ) ) |
| 15 |
14
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑎 ∈ 𝑖 ) → ( ∀ 𝑏 ∈ 𝑖 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑖 ↔ ∀ 𝑏 ∈ 𝑖 ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑂 ) ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑖 ) ) |
| 16 |
15
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝑖 ) ) → ( ∀ 𝑏 ∈ 𝑖 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑖 ↔ ∀ 𝑏 ∈ 𝑖 ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑂 ) ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑖 ) ) |
| 17 |
16
|
2ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑎 ∈ 𝑖 ∀ 𝑏 ∈ 𝑖 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑖 ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑎 ∈ 𝑖 ∀ 𝑏 ∈ 𝑖 ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑂 ) ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑖 ) ) |
| 18 |
17
|
3anbi3d |
⊢ ( 𝜑 → ( ( 𝑖 ⊆ ( Base ‘ 𝑅 ) ∧ 𝑖 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑎 ∈ 𝑖 ∀ 𝑏 ∈ 𝑖 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑖 ) ↔ ( 𝑖 ⊆ ( Base ‘ 𝑅 ) ∧ 𝑖 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑎 ∈ 𝑖 ∀ 𝑏 ∈ 𝑖 ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑂 ) ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑖 ) ) ) |
| 19 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 20 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 21 |
19 8 20 9
|
islidl |
⊢ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↔ ( 𝑖 ⊆ ( Base ‘ 𝑅 ) ∧ 𝑖 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑎 ∈ 𝑖 ∀ 𝑏 ∈ 𝑖 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑖 ) ) |
| 22 |
|
eqid |
⊢ ( LIdeal ‘ ( oppr ‘ 𝑂 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑂 ) ) |
| 23 |
1 8
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 24 |
5 23
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑂 ) ) |
| 25 |
1 20
|
oppradd |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑂 ) |
| 26 |
5 25
|
oppradd |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( oppr ‘ 𝑂 ) ) |
| 27 |
22 24 26 6
|
islidl |
⊢ ( 𝑖 ∈ ( LIdeal ‘ ( oppr ‘ 𝑂 ) ) ↔ ( 𝑖 ⊆ ( Base ‘ 𝑅 ) ∧ 𝑖 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑎 ∈ 𝑖 ∀ 𝑏 ∈ 𝑖 ( ( 𝑥 ( .r ‘ ( oppr ‘ 𝑂 ) ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝑖 ) ) |
| 28 |
18 21 27
|
3bitr4g |
⊢ ( 𝜑 → ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ↔ 𝑖 ∈ ( LIdeal ‘ ( oppr ‘ 𝑂 ) ) ) ) |
| 29 |
28
|
eqrdv |
⊢ ( 𝜑 → ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ ( oppr ‘ 𝑂 ) ) ) |