Description: A class is a group if and only if its opposite (ring) is a group. (Contributed by SN, 20-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprgrp.o | |- O = ( oppR ` R ) |
|
| Assertion | opprgrpb | |- ( R e. Grp <-> O e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprgrp.o | |- O = ( oppR ` R ) |
|
| 2 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 3 | basendxnmulrndx | |- ( Base ` ndx ) =/= ( .r ` ndx ) |
|
| 4 | 1 2 3 | opprlem | |- ( Base ` R ) = ( Base ` O ) |
| 5 | plusgid | |- +g = Slot ( +g ` ndx ) |
|
| 6 | plusgndxnmulrndx | |- ( +g ` ndx ) =/= ( .r ` ndx ) |
|
| 7 | 1 5 6 | opprlem | |- ( +g ` R ) = ( +g ` O ) |
| 8 | 4 7 | grpprop | |- ( R e. Grp <-> O e. Grp ) |