Description: Equality deduction for class abstraction of nested ordered pairs. (Contributed by Giovanni Mascellani, 10-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oprabbi | |- ( A. x A. y A. z ( ph <-> ps ) -> { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , z >. | ps } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqoprab2b |  |-  ( { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , z >. | ps } <-> A. x A. y A. z ( ph <-> ps ) ) | |
| 2 | 1 | biimpri |  |-  ( A. x A. y A. z ( ph <-> ps ) -> { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , z >. | ps } ) |