Metamath Proof Explorer


Theorem oprabbi

Description: Equality deduction for class abstraction of nested ordered pairs. (Contributed by Giovanni Mascellani, 10-Apr-2018)

Ref Expression
Assertion oprabbi
|- ( A. x A. y A. z ( ph <-> ps ) -> { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , z >. | ps } )

Proof

Step Hyp Ref Expression
1 eqoprab2b
 |-  ( { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , z >. | ps } <-> A. x A. y A. z ( ph <-> ps ) )
2 1 biimpri
 |-  ( A. x A. y A. z ( ph <-> ps ) -> { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , z >. | ps } )