Description: Equality deduction for class abstraction of nested ordered pairs. (Contributed by Giovanni Mascellani, 10-Apr-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | oprabbi | |- ( A. x A. y A. z ( ph <-> ps ) -> { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , z >. | ps } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqoprab2b | |- ( { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , z >. | ps } <-> A. x A. y A. z ( ph <-> ps ) ) |
|
2 | 1 | biimpri | |- ( A. x A. y A. z ( ph <-> ps ) -> { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , z >. | ps } ) |