Metamath Proof Explorer


Theorem oprabbi

Description: Equality deduction for class abstraction of nested ordered pairs. (Contributed by Giovanni Mascellani, 10-Apr-2018)

Ref Expression
Assertion oprabbi x y z φ ψ x y z | φ = x y z | ψ

Proof

Step Hyp Ref Expression
1 eqoprab2b x y z | φ = x y z | ψ x y z φ ψ
2 1 biimpri x y z φ ψ x y z | φ = x y z | ψ