Metamath Proof Explorer


Theorem opsrsca

Description: The scalar ring of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 30-Aug-2015) (Revised by AV, 1-Nov-2024)

Ref Expression
Hypotheses opsrbas.s
|- S = ( I mPwSer R )
opsrbas.o
|- O = ( ( I ordPwSer R ) ` T )
opsrbas.t
|- ( ph -> T C_ ( I X. I ) )
opsrsca.i
|- ( ph -> I e. V )
opsrsca.r
|- ( ph -> R e. W )
Assertion opsrsca
|- ( ph -> R = ( Scalar ` O ) )

Proof

Step Hyp Ref Expression
1 opsrbas.s
 |-  S = ( I mPwSer R )
2 opsrbas.o
 |-  O = ( ( I ordPwSer R ) ` T )
3 opsrbas.t
 |-  ( ph -> T C_ ( I X. I ) )
4 opsrsca.i
 |-  ( ph -> I e. V )
5 opsrsca.r
 |-  ( ph -> R e. W )
6 1 4 5 psrsca
 |-  ( ph -> R = ( Scalar ` S ) )
7 scaid
 |-  Scalar = Slot ( Scalar ` ndx )
8 plendxnscandx
 |-  ( le ` ndx ) =/= ( Scalar ` ndx )
9 8 necomi
 |-  ( Scalar ` ndx ) =/= ( le ` ndx )
10 1 2 3 7 9 opsrbaslem
 |-  ( ph -> ( Scalar ` S ) = ( Scalar ` O ) )
11 6 10 eqtrd
 |-  ( ph -> R = ( Scalar ` O ) )