Metamath Proof Explorer


Theorem opsrsca

Description: The scalar ring of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 30-Aug-2015) (Revised by AV, 1-Nov-2024)

Ref Expression
Hypotheses opsrbas.s S = I mPwSer R
opsrbas.o O = I ordPwSer R T
opsrbas.t φ T I × I
opsrsca.i φ I V
opsrsca.r φ R W
Assertion opsrsca φ R = Scalar O

Proof

Step Hyp Ref Expression
1 opsrbas.s S = I mPwSer R
2 opsrbas.o O = I ordPwSer R T
3 opsrbas.t φ T I × I
4 opsrsca.i φ I V
5 opsrsca.r φ R W
6 1 4 5 psrsca φ R = Scalar S
7 scaid Scalar = Slot Scalar ndx
8 plendxnscandx ndx Scalar ndx
9 8 necomi Scalar ndx ndx
10 1 2 3 7 9 opsrbaslem φ Scalar S = Scalar O
11 6 10 eqtrd φ R = Scalar O