Metamath Proof Explorer


Theorem opsrbaslem

Description: Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 2-Oct-2015) (Revised by AV, 9-Sep-2021) (Revised by AV, 1-Nov-2024)

Ref Expression
Hypotheses opsrbas.s S = I mPwSer R
opsrbas.o O = I ordPwSer R T
opsrbas.t φ T I × I
opsrbaslem.1 E = Slot E ndx
opsrbaslem.2 E ndx ndx
Assertion opsrbaslem φ E S = E O

Proof

Step Hyp Ref Expression
1 opsrbas.s S = I mPwSer R
2 opsrbas.o O = I ordPwSer R T
3 opsrbas.t φ T I × I
4 opsrbaslem.1 E = Slot E ndx
5 opsrbaslem.2 E ndx ndx
6 4 5 setsnid E S = E S sSet ndx O
7 eqid O = O
8 simprl φ I V R V I V
9 simprr φ I V R V R V
10 3 adantr φ I V R V T I × I
11 1 2 7 8 9 10 opsrval2 φ I V R V O = S sSet ndx O
12 11 fveq2d φ I V R V E O = E S sSet ndx O
13 6 12 eqtr4id φ I V R V E S = E O
14 0fv T =
15 14 eqcomi = T
16 reldmpsr Rel dom mPwSer
17 16 ovprc ¬ I V R V I mPwSer R =
18 reldmopsr Rel dom ordPwSer
19 18 ovprc ¬ I V R V I ordPwSer R =
20 19 fveq1d ¬ I V R V I ordPwSer R T = T
21 15 17 20 3eqtr4a ¬ I V R V I mPwSer R = I ordPwSer R T
22 21 1 2 3eqtr4g ¬ I V R V S = O
23 22 fveq2d ¬ I V R V E S = E O
24 23 adantl φ ¬ I V R V E S = E O
25 13 24 pm2.61dan φ E S = E O