Metamath Proof Explorer


Theorem opsrval2

Description: Self-referential expression for the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses opsrval2.s S = I mPwSer R
opsrval2.o O = I ordPwSer R T
opsrval2.l ˙ = O
opsrval2.i φ I V
opsrval2.r φ R W
opsrval2.t φ T I × I
Assertion opsrval2 φ O = S sSet ndx ˙

Proof

Step Hyp Ref Expression
1 opsrval2.s S = I mPwSer R
2 opsrval2.o O = I ordPwSer R T
3 opsrval2.l ˙ = O
4 opsrval2.i φ I V
5 opsrval2.r φ R W
6 opsrval2.t φ T I × I
7 eqid Base S = Base S
8 eqid < R = < R
9 eqid T < bag I = T < bag I
10 eqid h 0 I | h -1 Fin = h 0 I | h -1 Fin
11 eqid x y | x y Base S z h 0 I | h -1 Fin x z < R y z w h 0 I | h -1 Fin w T < bag I z x w = y w x = y = x y | x y Base S z h 0 I | h -1 Fin x z < R y z w h 0 I | h -1 Fin w T < bag I z x w = y w x = y
12 1 2 7 8 9 10 11 4 5 6 opsrval φ O = S sSet ndx x y | x y Base S z h 0 I | h -1 Fin x z < R y z w h 0 I | h -1 Fin w T < bag I z x w = y w x = y
13 1 2 7 8 9 10 3 6 opsrle φ ˙ = x y | x y Base S z h 0 I | h -1 Fin x z < R y z w h 0 I | h -1 Fin w T < bag I z x w = y w x = y
14 13 opeq2d φ ndx ˙ = ndx x y | x y Base S z h 0 I | h -1 Fin x z < R y z w h 0 I | h -1 Fin w T < bag I z x w = y w x = y
15 14 oveq2d φ S sSet ndx ˙ = S sSet ndx x y | x y Base S z h 0 I | h -1 Fin x z < R y z w h 0 I | h -1 Fin w T < bag I z x w = y w x = y
16 12 15 eqtr4d φ O = S sSet ndx ˙