Metamath Proof Explorer


Theorem opsrval2

Description: Self-referential expression for the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses opsrval2.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
opsrval2.o 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 )
opsrval2.l = ( le ‘ 𝑂 )
opsrval2.i ( 𝜑𝐼𝑉 )
opsrval2.r ( 𝜑𝑅𝑊 )
opsrval2.t ( 𝜑𝑇 ⊆ ( 𝐼 × 𝐼 ) )
Assertion opsrval2 ( 𝜑𝑂 = ( 𝑆 sSet ⟨ ( le ‘ ndx ) , ⟩ ) )

Proof

Step Hyp Ref Expression
1 opsrval2.s 𝑆 = ( 𝐼 mPwSer 𝑅 )
2 opsrval2.o 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 )
3 opsrval2.l = ( le ‘ 𝑂 )
4 opsrval2.i ( 𝜑𝐼𝑉 )
5 opsrval2.r ( 𝜑𝑅𝑊 )
6 opsrval2.t ( 𝜑𝑇 ⊆ ( 𝐼 × 𝐼 ) )
7 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
8 eqid ( lt ‘ 𝑅 ) = ( lt ‘ 𝑅 )
9 eqid ( 𝑇 <bag 𝐼 ) = ( 𝑇 <bag 𝐼 )
10 eqid { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
11 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑆 ) ∧ ( ∃ 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( ( 𝑥𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( 𝑤 ( 𝑇 <bag 𝐼 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑆 ) ∧ ( ∃ 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( ( 𝑥𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( 𝑤 ( 𝑇 <bag 𝐼 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) }
12 1 2 7 8 9 10 11 4 5 6 opsrval ( 𝜑𝑂 = ( 𝑆 sSet ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑆 ) ∧ ( ∃ 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( ( 𝑥𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( 𝑤 ( 𝑇 <bag 𝐼 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ⟩ ) )
13 1 2 7 8 9 10 3 6 opsrle ( 𝜑 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑆 ) ∧ ( ∃ 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( ( 𝑥𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( 𝑤 ( 𝑇 <bag 𝐼 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } )
14 13 opeq2d ( 𝜑 → ⟨ ( le ‘ ndx ) , ⟩ = ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑆 ) ∧ ( ∃ 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( ( 𝑥𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( 𝑤 ( 𝑇 <bag 𝐼 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ⟩ )
15 14 oveq2d ( 𝜑 → ( 𝑆 sSet ⟨ ( le ‘ ndx ) , ⟩ ) = ( 𝑆 sSet ⟨ ( le ‘ ndx ) , { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑆 ) ∧ ( ∃ 𝑧 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( ( 𝑥𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦𝑧 ) ∧ ∀ 𝑤 ∈ { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } ( 𝑤 ( 𝑇 <bag 𝐼 ) 𝑧 → ( 𝑥𝑤 ) = ( 𝑦𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ⟩ ) )
16 12 15 eqtr4d ( 𝜑𝑂 = ( 𝑆 sSet ⟨ ( le ‘ ndx ) , ⟩ ) )