Step |
Hyp |
Ref |
Expression |
1 |
|
opsrval2.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
2 |
|
opsrval2.o |
⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) |
3 |
|
opsrval2.l |
⊢ ≤ = ( le ‘ 𝑂 ) |
4 |
|
opsrval2.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
5 |
|
opsrval2.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
6 |
|
opsrval2.t |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
8 |
|
eqid |
⊢ ( lt ‘ 𝑅 ) = ( lt ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( 𝑇 <bag 𝐼 ) = ( 𝑇 <bag 𝐼 ) |
10 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
11 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑆 ) ∧ ( ∃ 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( 𝑤 ( 𝑇 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑆 ) ∧ ( ∃ 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( 𝑤 ( 𝑇 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } |
12 |
1 2 7 8 9 10 11 4 5 6
|
opsrval |
⊢ ( 𝜑 → 𝑂 = ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑆 ) ∧ ( ∃ 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( 𝑤 ( 𝑇 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) |
13 |
1 2 7 8 9 10 3 6
|
opsrle |
⊢ ( 𝜑 → ≤ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑆 ) ∧ ( ∃ 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( 𝑤 ( 𝑇 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } ) |
14 |
13
|
opeq2d |
⊢ ( 𝜑 → 〈 ( le ‘ ndx ) , ≤ 〉 = 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑆 ) ∧ ( ∃ 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( 𝑤 ( 𝑇 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) |
15 |
14
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 sSet 〈 ( le ‘ ndx ) , ≤ 〉 ) = ( 𝑆 sSet 〈 ( le ‘ ndx ) , { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝑆 ) ∧ ( ∃ 𝑧 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( ( 𝑥 ‘ 𝑧 ) ( lt ‘ 𝑅 ) ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ( 𝑤 ( 𝑇 <bag 𝐼 ) 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ∨ 𝑥 = 𝑦 ) ) } 〉 ) ) |
16 |
12 15
|
eqtr4d |
⊢ ( 𝜑 → 𝑂 = ( 𝑆 sSet 〈 ( le ‘ ndx ) , ≤ 〉 ) ) |