Metamath Proof Explorer


Theorem opsrval

Description: The value of the "ordered power series" function. This is the same as mPwSer psrval , but with the addition of a well-order on I we can turn a strict order on R into a strict order on the power series structure. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses opsrval.s S = I mPwSer R
opsrval.o O = I ordPwSer R T
opsrval.b B = Base S
opsrval.q < ˙ = < R
opsrval.c C = T < bag I
opsrval.d D = h 0 I | h -1 Fin
opsrval.l ˙ = x y | x y B z D x z < ˙ y z w D w C z x w = y w x = y
opsrval.i φ I V
opsrval.r φ R W
opsrval.t φ T I × I
Assertion opsrval φ O = S sSet ndx ˙

Proof

Step Hyp Ref Expression
1 opsrval.s S = I mPwSer R
2 opsrval.o O = I ordPwSer R T
3 opsrval.b B = Base S
4 opsrval.q < ˙ = < R
5 opsrval.c C = T < bag I
6 opsrval.d D = h 0 I | h -1 Fin
7 opsrval.l ˙ = x y | x y B z D x z < ˙ y z w D w C z x w = y w x = y
8 opsrval.i φ I V
9 opsrval.r φ R W
10 opsrval.t φ T I × I
11 8 elexd φ I V
12 9 elexd φ R V
13 8 8 xpexd φ I × I V
14 pwexg I × I V 𝒫 I × I V
15 mptexg 𝒫 I × I V r 𝒫 I × I S sSet ndx x y | x y B z D x z < ˙ y z w D w r < bag I z x w = y w x = y V
16 13 14 15 3syl φ r 𝒫 I × I S sSet ndx x y | x y B z D x z < ˙ y z w D w r < bag I z x w = y w x = y V
17 simpl i = I s = R i = I
18 17 sqxpeqd i = I s = R i × i = I × I
19 18 pweqd i = I s = R 𝒫 i × i = 𝒫 I × I
20 ovexd i = I s = R i mPwSer s V
21 id p = i mPwSer s p = i mPwSer s
22 oveq12 i = I s = R i mPwSer s = I mPwSer R
23 21 22 sylan9eqr i = I s = R p = i mPwSer s p = I mPwSer R
24 23 1 eqtr4di i = I s = R p = i mPwSer s p = S
25 24 fveq2d i = I s = R p = i mPwSer s Base p = Base S
26 25 3 eqtr4di i = I s = R p = i mPwSer s Base p = B
27 26 sseq2d i = I s = R p = i mPwSer s x y Base p x y B
28 ovex 0 i V
29 28 rabex h 0 i | h -1 Fin V
30 29 a1i i = I s = R p = i mPwSer s h 0 i | h -1 Fin V
31 17 adantr i = I s = R p = i mPwSer s i = I
32 31 oveq2d i = I s = R p = i mPwSer s 0 i = 0 I
33 rabeq 0 i = 0 I h 0 i | h -1 Fin = h 0 I | h -1 Fin
34 32 33 syl i = I s = R p = i mPwSer s h 0 i | h -1 Fin = h 0 I | h -1 Fin
35 34 6 eqtr4di i = I s = R p = i mPwSer s h 0 i | h -1 Fin = D
36 simpr i = I s = R p = i mPwSer s d = D d = D
37 simpllr i = I s = R p = i mPwSer s d = D s = R
38 37 fveq2d i = I s = R p = i mPwSer s d = D < s = < R
39 38 4 eqtr4di i = I s = R p = i mPwSer s d = D < s = < ˙
40 39 breqd i = I s = R p = i mPwSer s d = D x z < s y z x z < ˙ y z
41 31 adantr i = I s = R p = i mPwSer s d = D i = I
42 41 oveq2d i = I s = R p = i mPwSer s d = D r < bag i = r < bag I
43 42 breqd i = I s = R p = i mPwSer s d = D w r < bag i z w r < bag I z
44 43 imbi1d i = I s = R p = i mPwSer s d = D w r < bag i z x w = y w w r < bag I z x w = y w
45 36 44 raleqbidv i = I s = R p = i mPwSer s d = D w d w r < bag i z x w = y w w D w r < bag I z x w = y w
46 40 45 anbi12d i = I s = R p = i mPwSer s d = D x z < s y z w d w r < bag i z x w = y w x z < ˙ y z w D w r < bag I z x w = y w
47 36 46 rexeqbidv i = I s = R p = i mPwSer s d = D z d x z < s y z w d w r < bag i z x w = y w z D x z < ˙ y z w D w r < bag I z x w = y w
48 30 35 47 sbcied2 i = I s = R p = i mPwSer s [˙ h 0 i | h -1 Fin / d]˙ z d x z < s y z w d w r < bag i z x w = y w z D x z < ˙ y z w D w r < bag I z x w = y w
49 48 orbi1d i = I s = R p = i mPwSer s [˙ h 0 i | h -1 Fin / d]˙ z d x z < s y z w d w r < bag i z x w = y w x = y z D x z < ˙ y z w D w r < bag I z x w = y w x = y
50 27 49 anbi12d i = I s = R p = i mPwSer s x y Base p [˙ h 0 i | h -1 Fin / d]˙ z d x z < s y z w d w r < bag i z x w = y w x = y x y B z D x z < ˙ y z w D w r < bag I z x w = y w x = y
51 50 opabbidv i = I s = R p = i mPwSer s x y | x y Base p [˙ h 0 i | h -1 Fin / d]˙ z d x z < s y z w d w r < bag i z x w = y w x = y = x y | x y B z D x z < ˙ y z w D w r < bag I z x w = y w x = y
52 51 opeq2d i = I s = R p = i mPwSer s ndx x y | x y Base p [˙ h 0 i | h -1 Fin / d]˙ z d x z < s y z w d w r < bag i z x w = y w x = y = ndx x y | x y B z D x z < ˙ y z w D w r < bag I z x w = y w x = y
53 24 52 oveq12d i = I s = R p = i mPwSer s p sSet ndx x y | x y Base p [˙ h 0 i | h -1 Fin / d]˙ z d x z < s y z w d w r < bag i z x w = y w x = y = S sSet ndx x y | x y B z D x z < ˙ y z w D w r < bag I z x w = y w x = y
54 20 53 csbied i = I s = R i mPwSer s / p p sSet ndx x y | x y Base p [˙ h 0 i | h -1 Fin / d]˙ z d x z < s y z w d w r < bag i z x w = y w x = y = S sSet ndx x y | x y B z D x z < ˙ y z w D w r < bag I z x w = y w x = y
55 19 54 mpteq12dv i = I s = R r 𝒫 i × i i mPwSer s / p p sSet ndx x y | x y Base p [˙ h 0 i | h -1 Fin / d]˙ z d x z < s y z w d w r < bag i z x w = y w x = y = r 𝒫 I × I S sSet ndx x y | x y B z D x z < ˙ y z w D w r < bag I z x w = y w x = y
56 df-opsr ordPwSer = i V , s V r 𝒫 i × i i mPwSer s / p p sSet ndx x y | x y Base p [˙ h 0 i | h -1 Fin / d]˙ z d x z < s y z w d w r < bag i z x w = y w x = y
57 55 56 ovmpoga I V R V r 𝒫 I × I S sSet ndx x y | x y B z D x z < ˙ y z w D w r < bag I z x w = y w x = y V I ordPwSer R = r 𝒫 I × I S sSet ndx x y | x y B z D x z < ˙ y z w D w r < bag I z x w = y w x = y
58 11 12 16 57 syl3anc φ I ordPwSer R = r 𝒫 I × I S sSet ndx x y | x y B z D x z < ˙ y z w D w r < bag I z x w = y w x = y
59 simpr φ r = T r = T
60 59 oveq1d φ r = T r < bag I = T < bag I
61 60 5 eqtr4di φ r = T r < bag I = C
62 61 breqd φ r = T w r < bag I z w C z
63 62 imbi1d φ r = T w r < bag I z x w = y w w C z x w = y w
64 63 ralbidv φ r = T w D w r < bag I z x w = y w w D w C z x w = y w
65 64 anbi2d φ r = T x z < ˙ y z w D w r < bag I z x w = y w x z < ˙ y z w D w C z x w = y w
66 65 rexbidv φ r = T z D x z < ˙ y z w D w r < bag I z x w = y w z D x z < ˙ y z w D w C z x w = y w
67 66 orbi1d φ r = T z D x z < ˙ y z w D w r < bag I z x w = y w x = y z D x z < ˙ y z w D w C z x w = y w x = y
68 67 anbi2d φ r = T x y B z D x z < ˙ y z w D w r < bag I z x w = y w x = y x y B z D x z < ˙ y z w D w C z x w = y w x = y
69 68 opabbidv φ r = T x y | x y B z D x z < ˙ y z w D w r < bag I z x w = y w x = y = x y | x y B z D x z < ˙ y z w D w C z x w = y w x = y
70 69 7 eqtr4di φ r = T x y | x y B z D x z < ˙ y z w D w r < bag I z x w = y w x = y = ˙
71 70 opeq2d φ r = T ndx x y | x y B z D x z < ˙ y z w D w r < bag I z x w = y w x = y = ndx ˙
72 71 oveq2d φ r = T S sSet ndx x y | x y B z D x z < ˙ y z w D w r < bag I z x w = y w x = y = S sSet ndx ˙
73 13 10 sselpwd φ T 𝒫 I × I
74 ovexd φ S sSet ndx ˙ V
75 58 72 73 74 fvmptd φ I ordPwSer R T = S sSet ndx ˙
76 2 75 syl5eq φ O = S sSet ndx ˙