Metamath Proof Explorer


Definition df-ltbag

Description: Define a well-order on the set of all finite bags from the index set i given a wellordering r of i . (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Assertion df-ltbag <bag=rV,iVxy|xyh0i|h-1Finzixz<yzwizrwxw=yw

Detailed syntax breakdown

Step Hyp Ref Expression
0 cltb class<bag
1 vr setvarr
2 cvv classV
3 vi setvari
4 vx setvarx
5 vy setvary
6 4 cv setvarx
7 5 cv setvary
8 6 7 cpr classxy
9 vh setvarh
10 cn0 class0
11 cmap class𝑚
12 3 cv setvari
13 10 12 11 co class0i
14 9 cv setvarh
15 14 ccnv classh-1
16 cn class
17 15 16 cima classh-1
18 cfn classFin
19 17 18 wcel wffh-1Fin
20 19 9 13 crab classh0i|h-1Fin
21 8 20 wss wffxyh0i|h-1Fin
22 vz setvarz
23 22 cv setvarz
24 23 6 cfv classxz
25 clt class<
26 23 7 cfv classyz
27 24 26 25 wbr wffxz<yz
28 vw setvarw
29 1 cv setvarr
30 28 cv setvarw
31 23 30 29 wbr wffzrw
32 30 6 cfv classxw
33 30 7 cfv classyw
34 32 33 wceq wffxw=yw
35 31 34 wi wffzrwxw=yw
36 35 28 12 wral wffwizrwxw=yw
37 27 36 wa wffxz<yzwizrwxw=yw
38 37 22 12 wrex wffzixz<yzwizrwxw=yw
39 21 38 wa wffxyh0i|h-1Finzixz<yzwizrwxw=yw
40 39 4 5 copab classxy|xyh0i|h-1Finzixz<yzwizrwxw=yw
41 1 3 2 2 40 cmpo classrV,iVxy|xyh0i|h-1Finzixz<yzwizrwxw=yw
42 0 41 wceq wff<bag=rV,iVxy|xyh0i|h-1Finzixz<yzwizrwxw=yw