Metamath Proof Explorer


Theorem reldmopsr

Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015)

Ref Expression
Assertion reldmopsr ReldomordPwSer

Proof

Step Hyp Ref Expression
1 df-opsr ordPwSer=iV,sVr𝒫i×iimPwSers/ppsSetndxxy|xyBasep[˙h0i|h-1Fin/d]˙zdxz<syzwdwr<bagizxw=ywx=y
2 1 reldmmpo ReldomordPwSer