Description: Two ordered pairs are not equal if their second components are not equal. (Contributed by Zhi Wang, 7-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opth2neg | |- ( ( A e. V /\ B e. W ) -> ( B =/= D -> <. A , B >. =/= <. C , D >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc | |- ( B =/= D -> ( A =/= C \/ B =/= D ) ) |
|
| 2 | opthneg | |- ( ( A e. V /\ B e. W ) -> ( <. A , B >. =/= <. C , D >. <-> ( A =/= C \/ B =/= D ) ) ) |
|
| 3 | 1 2 | imbitrrid | |- ( ( A e. V /\ B e. W ) -> ( B =/= D -> <. A , B >. =/= <. C , D >. ) ) |