Metamath Proof Explorer


Theorem opth2neg

Description: Two ordered pairs are not equal if their second components are not equal. (Contributed by Zhi Wang, 7-Oct-2025)

Ref Expression
Assertion opth2neg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐵𝐷 → ⟨ 𝐴 , 𝐵 ⟩ ≠ ⟨ 𝐶 , 𝐷 ⟩ ) )

Proof

Step Hyp Ref Expression
1 olc ( 𝐵𝐷 → ( 𝐴𝐶𝐵𝐷 ) )
2 opthneg ( ( 𝐴𝑉𝐵𝑊 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ≠ ⟨ 𝐶 , 𝐷 ⟩ ↔ ( 𝐴𝐶𝐵𝐷 ) ) )
3 1 2 imbitrrid ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐵𝐷 → ⟨ 𝐴 , 𝐵 ⟩ ≠ ⟨ 𝐶 , 𝐷 ⟩ ) )