Description: Two ordered pairs are not equal if their second components are not equal. (Contributed by Zhi Wang, 7-Oct-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | opth2neg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 ≠ 𝐷 → 〈 𝐴 , 𝐵 〉 ≠ 〈 𝐶 , 𝐷 〉 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc | ⊢ ( 𝐵 ≠ 𝐷 → ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ) | |
2 | opthneg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 〈 𝐴 , 𝐵 〉 ≠ 〈 𝐶 , 𝐷 〉 ↔ ( 𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐷 ) ) ) | |
3 | 1 2 | imbitrrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐵 ≠ 𝐷 → 〈 𝐴 , 𝐵 〉 ≠ 〈 𝐶 , 𝐷 〉 ) ) |