Metamath Proof Explorer


Theorem ordtconn

Description: Connectedness in the order topology of a complete uniform totally ordered space. (Contributed by Thierry Arnoux, 15-Sep-2018)

Ref Expression
Hypotheses ordtconn.x
|- B = ( Base ` K )
ordtconn.l
|- .<_ = ( ( le ` K ) i^i ( B X. B ) )
ordtconn.j
|- J = ( ordTop ` .<_ )
Assertion ordtconn
|- T.

Proof

Step Hyp Ref Expression
1 ordtconn.x
 |-  B = ( Base ` K )
2 ordtconn.l
 |-  .<_ = ( ( le ` K ) i^i ( B X. B ) )
3 ordtconn.j
 |-  J = ( ordTop ` .<_ )
4 tru
 |-  T.