Metamath Proof Explorer
Description: Connectedness in the order topology of a complete uniform totally
ordered space. (Contributed by Thierry Arnoux, 15-Sep-2018)
|
|
Ref |
Expression |
|
Hypotheses |
ordtconn.x |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
|
|
ordtconn.l |
⊢ ≤ = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) |
|
|
ordtconn.j |
⊢ 𝐽 = ( ordTop ‘ ≤ ) |
|
Assertion |
ordtconn |
⊢ ⊤ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ordtconn.x |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
ordtconn.l |
⊢ ≤ = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) |
3 |
|
ordtconn.j |
⊢ 𝐽 = ( ordTop ‘ ≤ ) |
4 |
|
tru |
⊢ ⊤ |