Metamath Proof Explorer
		
		
		
		Description:  Connectedness in the order topology of a complete uniform totally
       ordered space.  (Contributed by Thierry Arnoux, 15-Sep-2018)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ordtconn.x | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
					
						|  |  | ordtconn.l | ⊢  ≤   =  ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) | 
					
						|  |  | ordtconn.j | ⊢ 𝐽  =  ( ordTop ‘  ≤  ) | 
				
					|  | Assertion | ordtconn | ⊢  ⊤ | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordtconn.x | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | ordtconn.l | ⊢  ≤   =  ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) ) | 
						
							| 3 |  | ordtconn.j | ⊢ 𝐽  =  ( ordTop ‘  ≤  ) | 
						
							| 4 |  | tru | ⊢ ⊤ |