Metamath Proof Explorer


Theorem ordtypelem5

Description: Lemma for ordtype . (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Hypotheses ordtypelem.1
|- F = recs ( G )
ordtypelem.2
|- C = { w e. A | A. j e. ran h j R w }
ordtypelem.3
|- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) )
ordtypelem.5
|- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t }
ordtypelem.6
|- O = OrdIso ( R , A )
ordtypelem.7
|- ( ph -> R We A )
ordtypelem.8
|- ( ph -> R Se A )
Assertion ordtypelem5
|- ( ph -> ( Ord dom O /\ O : dom O --> A ) )

Proof

Step Hyp Ref Expression
1 ordtypelem.1
 |-  F = recs ( G )
2 ordtypelem.2
 |-  C = { w e. A | A. j e. ran h j R w }
3 ordtypelem.3
 |-  G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) )
4 ordtypelem.5
 |-  T = { x e. On | E. t e. A A. z e. ( F " x ) z R t }
5 ordtypelem.6
 |-  O = OrdIso ( R , A )
6 ordtypelem.7
 |-  ( ph -> R We A )
7 ordtypelem.8
 |-  ( ph -> R Se A )
8 1 2 3 4 5 6 7 ordtypelem2
 |-  ( ph -> Ord T )
9 1 tfr1a
 |-  ( Fun F /\ Lim dom F )
10 9 simpri
 |-  Lim dom F
11 limord
 |-  ( Lim dom F -> Ord dom F )
12 10 11 ax-mp
 |-  Ord dom F
13 ordin
 |-  ( ( Ord T /\ Ord dom F ) -> Ord ( T i^i dom F ) )
14 8 12 13 sylancl
 |-  ( ph -> Ord ( T i^i dom F ) )
15 1 2 3 4 5 6 7 ordtypelem4
 |-  ( ph -> O : ( T i^i dom F ) --> A )
16 15 fdmd
 |-  ( ph -> dom O = ( T i^i dom F ) )
17 ordeq
 |-  ( dom O = ( T i^i dom F ) -> ( Ord dom O <-> Ord ( T i^i dom F ) ) )
18 16 17 syl
 |-  ( ph -> ( Ord dom O <-> Ord ( T i^i dom F ) ) )
19 14 18 mpbird
 |-  ( ph -> Ord dom O )
20 15 ffdmd
 |-  ( ph -> O : dom O --> A )
21 19 20 jca
 |-  ( ph -> ( Ord dom O /\ O : dom O --> A ) )