Description: If an integer divides either of two others, it divides their product. (Contributed by Paul Chapman, 17-Nov-2012) (Proof shortened by Mario Carneiro, 17-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordvdsmul | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M \/ K || N ) -> K || ( M x. N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsmultr1 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || M -> K || ( M x. N ) ) ) |
|
| 2 | dvdsmultr2 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || N -> K || ( M x. N ) ) ) |
|
| 3 | 1 2 | jaod | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || M \/ K || N ) -> K || ( M x. N ) ) ) |