| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsmul2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> N || ( M x. N ) ) |
| 2 |
1
|
biantrud |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( K || N <-> ( K || N /\ N || ( M x. N ) ) ) ) |
| 3 |
2
|
3adant1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || N <-> ( K || N /\ N || ( M x. N ) ) ) ) |
| 4 |
|
simp1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> K e. ZZ ) |
| 5 |
|
simp3 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
| 6 |
|
zmulcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
| 7 |
6
|
3adant1 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
| 8 |
|
dvdstr |
|- ( ( K e. ZZ /\ N e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( K || N /\ N || ( M x. N ) ) -> K || ( M x. N ) ) ) |
| 9 |
4 5 7 8
|
syl3anc |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K || N /\ N || ( M x. N ) ) -> K || ( M x. N ) ) ) |
| 10 |
3 9
|
sylbid |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || N -> K || ( M x. N ) ) ) |