Metamath Proof Explorer


Theorem dvdsmultr2d

Description: Deduction form of dvdsmultr2 . (Contributed by SN, 23-Aug-2024)

Ref Expression
Hypotheses dvdsmultr2d.1
|- ( ph -> K e. ZZ )
dvdsmultr2d.2
|- ( ph -> M e. ZZ )
dvdsmultr2d.3
|- ( ph -> N e. ZZ )
dvdsmultr2d.4
|- ( ph -> K || N )
Assertion dvdsmultr2d
|- ( ph -> K || ( M x. N ) )

Proof

Step Hyp Ref Expression
1 dvdsmultr2d.1
 |-  ( ph -> K e. ZZ )
2 dvdsmultr2d.2
 |-  ( ph -> M e. ZZ )
3 dvdsmultr2d.3
 |-  ( ph -> N e. ZZ )
4 dvdsmultr2d.4
 |-  ( ph -> K || N )
5 dvdsmultr2
 |-  ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || N -> K || ( M x. N ) ) )
6 1 2 3 5 syl3anc
 |-  ( ph -> ( K || N -> K || ( M x. N ) ) )
7 4 6 mpd
 |-  ( ph -> K || ( M x. N ) )