Description: Deduction form of dvdsmultr2 . (Contributed by SN, 23-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvdsmultr2d.1 | |- ( ph -> K e. ZZ ) |
|
dvdsmultr2d.2 | |- ( ph -> M e. ZZ ) |
||
dvdsmultr2d.3 | |- ( ph -> N e. ZZ ) |
||
dvdsmultr2d.4 | |- ( ph -> K || N ) |
||
Assertion | dvdsmultr2d | |- ( ph -> K || ( M x. N ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsmultr2d.1 | |- ( ph -> K e. ZZ ) |
|
2 | dvdsmultr2d.2 | |- ( ph -> M e. ZZ ) |
|
3 | dvdsmultr2d.3 | |- ( ph -> N e. ZZ ) |
|
4 | dvdsmultr2d.4 | |- ( ph -> K || N ) |
|
5 | dvdsmultr2 | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( K || N -> K || ( M x. N ) ) ) |
|
6 | 1 2 3 5 | syl3anc | |- ( ph -> ( K || N -> K || ( M x. N ) ) ) |
7 | 4 6 | mpd | |- ( ph -> K || ( M x. N ) ) |