Metamath Proof Explorer


Theorem orfa2

Description: Remove a contradicting disjunct from an antecedent. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Hypothesis orfa2.1
|- ( ph -> F. )
Assertion orfa2
|- ( ( ph \/ ps ) -> ps )

Proof

Step Hyp Ref Expression
1 orfa2.1
 |-  ( ph -> F. )
2 1 orim1i
 |-  ( ( ph \/ ps ) -> ( F. \/ ps ) )
3 falim
 |-  ( F. -> ps )
4 id
 |-  ( ps -> ps )
5 3 4 jaoi
 |-  ( ( F. \/ ps ) -> ps )
6 2 5 syl
 |-  ( ( ph \/ ps ) -> ps )