Metamath Proof Explorer


Theorem orfa2

Description: Remove a contradicting disjunct from an antecedent. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Hypothesis orfa2.1 ( 𝜑 → ⊥ )
Assertion orfa2 ( ( 𝜑𝜓 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 orfa2.1 ( 𝜑 → ⊥ )
2 1 orim1i ( ( 𝜑𝜓 ) → ( ⊥ ∨ 𝜓 ) )
3 falim ( ⊥ → 𝜓 )
4 id ( 𝜓𝜓 )
5 3 4 jaoi ( ( ⊥ ∨ 𝜓 ) → 𝜓 )
6 2 5 syl ( ( 𝜑𝜓 ) → 𝜓 )