Metamath Proof Explorer
Description: Remove a contradicting disjunct from an antecedent. (Contributed by Giovanni Mascellani, 15-Sep-2017)
|
|
Ref |
Expression |
|
Hypothesis |
orfa2.1 |
⊢ ( 𝜑 → ⊥ ) |
|
Assertion |
orfa2 |
⊢ ( ( 𝜑 ∨ 𝜓 ) → 𝜓 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orfa2.1 |
⊢ ( 𝜑 → ⊥ ) |
| 2 |
1
|
orim1i |
⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ⊥ ∨ 𝜓 ) ) |
| 3 |
|
falim |
⊢ ( ⊥ → 𝜓 ) |
| 4 |
|
id |
⊢ ( 𝜓 → 𝜓 ) |
| 5 |
3 4
|
jaoi |
⊢ ( ( ⊥ ∨ 𝜓 ) → 𝜓 ) |
| 6 |
2 5
|
syl |
⊢ ( ( 𝜑 ∨ 𝜓 ) → 𝜓 ) |