Metamath Proof Explorer


Theorem bifald

Description: Infer the equivalence to a contradiction from a negation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Hypothesis bifald.1 ( 𝜑 → ¬ 𝜓 )
Assertion bifald ( 𝜑 → ( 𝜓 ↔ ⊥ ) )

Proof

Step Hyp Ref Expression
1 bifald.1 ( 𝜑 → ¬ 𝜓 )
2 id ( 𝜓𝜓 )
3 falim ( ⊥ → 𝜓 )
4 2 3 pm5.21ni ( ¬ 𝜓 → ( 𝜓 ↔ ⊥ ) )
5 1 4 syl ( 𝜑 → ( 𝜓 ↔ ⊥ ) )