Metamath Proof Explorer


Theorem bifald

Description: Infer the equivalence to a contradiction from a negation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Hypothesis bifald.1 φ ¬ ψ
Assertion bifald φ ψ

Proof

Step Hyp Ref Expression
1 bifald.1 φ ¬ ψ
2 id ψ ψ
3 falim ψ
4 2 3 pm5.21ni ¬ ψ ψ
5 1 4 syl φ ψ