Metamath Proof Explorer


Theorem orsild

Description: A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Hypothesis orsild.1 ( 𝜑 → ¬ ( 𝜓𝜒 ) )
Assertion orsild ( 𝜑 → ¬ 𝜓 )

Proof

Step Hyp Ref Expression
1 orsild.1 ( 𝜑 → ¬ ( 𝜓𝜒 ) )
2 ioran ( ¬ ( 𝜓𝜒 ) ↔ ( ¬ 𝜓 ∧ ¬ 𝜒 ) )
3 1 2 sylib ( 𝜑 → ( ¬ 𝜓 ∧ ¬ 𝜒 ) )
4 3 simpld ( 𝜑 → ¬ 𝜓 )