Metamath Proof Explorer


Theorem orsird

Description: A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Hypothesis orsird.1 ( 𝜑 → ¬ ( 𝜓𝜒 ) )
Assertion orsird ( 𝜑 → ¬ 𝜒 )

Proof

Step Hyp Ref Expression
1 orsird.1 ( 𝜑 → ¬ ( 𝜓𝜒 ) )
2 ioran ( ¬ ( 𝜓𝜒 ) ↔ ( ¬ 𝜓 ∧ ¬ 𝜒 ) )
3 1 2 sylib ( 𝜑 → ( ¬ 𝜓 ∧ ¬ 𝜒 ) )
4 3 simprd ( 𝜑 → ¬ 𝜒 )