Description: The base set of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015) (Revised by AV, 9-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | otpsstr.w | |- K = { <. ( Base ` ndx ) , B >. , <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. } | |
| Assertion | otpsbas | |- ( B e. V -> B = ( Base ` K ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | otpsstr.w |  |-  K = { <. ( Base ` ndx ) , B >. , <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. } | |
| 2 | 1 | otpsstr | |- K Struct <. 1 , ; 1 0 >. | 
| 3 | baseid | |- Base = Slot ( Base ` ndx ) | |
| 4 | snsstp1 |  |-  { <. ( Base ` ndx ) , B >. } C_ { <. ( Base ` ndx ) , B >. , <. ( TopSet ` ndx ) , J >. , <. ( le ` ndx ) , .<_ >. } | |
| 5 | 4 1 | sseqtrri |  |-  { <. ( Base ` ndx ) , B >. } C_ K | 
| 6 | 2 3 5 | strfv | |- ( B e. V -> B = ( Base ` K ) ) |