Description: Value of an operation given by a maps-to rule. Deduction form of ovmpoga . (Contributed by SN, 14-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpogad.f | |- F = ( x e. C , y e. D |-> R ) |
|
| ovmpogad.s | |- ( ( x = A /\ y = B ) -> R = S ) |
||
| ovmpogad.1 | |- ( ph -> A e. C ) |
||
| ovmpogad.2 | |- ( ph -> B e. D ) |
||
| ovmpogad.v | |- ( ph -> S e. V ) |
||
| Assertion | ovmpogad | |- ( ph -> ( A F B ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpogad.f | |- F = ( x e. C , y e. D |-> R ) |
|
| 2 | ovmpogad.s | |- ( ( x = A /\ y = B ) -> R = S ) |
|
| 3 | ovmpogad.1 | |- ( ph -> A e. C ) |
|
| 4 | ovmpogad.2 | |- ( ph -> B e. D ) |
|
| 5 | ovmpogad.v | |- ( ph -> S e. V ) |
|
| 6 | 1 | a1i | |- ( ph -> F = ( x e. C , y e. D |-> R ) ) |
| 7 | 2 | adantl | |- ( ( ph /\ ( x = A /\ y = B ) ) -> R = S ) |
| 8 | 6 7 3 4 5 | ovmpod | |- ( ph -> ( A F B ) = S ) |