Metamath Proof Explorer


Theorem ovmpogad

Description: Value of an operation given by a maps-to rule. Deduction form of ovmpoga . (Contributed by SN, 14-Mar-2025)

Ref Expression
Hypotheses ovmpogad.f
|- F = ( x e. C , y e. D |-> R )
ovmpogad.s
|- ( ( x = A /\ y = B ) -> R = S )
ovmpogad.1
|- ( ph -> A e. C )
ovmpogad.2
|- ( ph -> B e. D )
ovmpogad.v
|- ( ph -> S e. V )
Assertion ovmpogad
|- ( ph -> ( A F B ) = S )

Proof

Step Hyp Ref Expression
1 ovmpogad.f
 |-  F = ( x e. C , y e. D |-> R )
2 ovmpogad.s
 |-  ( ( x = A /\ y = B ) -> R = S )
3 ovmpogad.1
 |-  ( ph -> A e. C )
4 ovmpogad.2
 |-  ( ph -> B e. D )
5 ovmpogad.v
 |-  ( ph -> S e. V )
6 1 a1i
 |-  ( ph -> F = ( x e. C , y e. D |-> R ) )
7 2 adantl
 |-  ( ( ph /\ ( x = A /\ y = B ) ) -> R = S )
8 6 7 3 4 5 ovmpod
 |-  ( ph -> ( A F B ) = S )