Description: Lemma for paddass . (Contributed by NM, 8-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddasslem.l | |- .<_ = ( le ` K ) |
|
| paddasslem.j | |- .\/ = ( join ` K ) |
||
| paddasslem.a | |- A = ( Atoms ` K ) |
||
| Assertion | paddasslem1 | |- ( ( ( K e. HL /\ ( x e. A /\ r e. A /\ y e. A ) /\ x =/= y ) /\ -. r .<_ ( x .\/ y ) ) -> -. x .<_ ( r .\/ y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddasslem.l | |- .<_ = ( le ` K ) |
|
| 2 | paddasslem.j | |- .\/ = ( join ` K ) |
|
| 3 | paddasslem.a | |- A = ( Atoms ` K ) |
|
| 4 | 1 2 3 | hlatexch2 | |- ( ( K e. HL /\ ( x e. A /\ r e. A /\ y e. A ) /\ x =/= y ) -> ( x .<_ ( r .\/ y ) -> r .<_ ( x .\/ y ) ) ) |
| 5 | 4 | con3dimp | |- ( ( ( K e. HL /\ ( x e. A /\ r e. A /\ y e. A ) /\ x =/= y ) /\ -. r .<_ ( x .\/ y ) ) -> -. x .<_ ( r .\/ y ) ) |