Description: Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | parteq2 | |- ( A = B -> ( R Part A <-> R Part B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 | |- ( A = B -> ( ( dom R /. R ) = A <-> ( dom R /. R ) = B ) ) |
|
2 | 1 | anbi2d | |- ( A = B -> ( ( Disj R /\ ( dom R /. R ) = A ) <-> ( Disj R /\ ( dom R /. R ) = B ) ) ) |
3 | dfpart2 | |- ( R Part A <-> ( Disj R /\ ( dom R /. R ) = A ) ) |
|
4 | dfpart2 | |- ( R Part B <-> ( Disj R /\ ( dom R /. R ) = B ) ) |
|
5 | 2 3 4 | 3bitr4g | |- ( A = B -> ( R Part A <-> R Part B ) ) |