Description: Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | parteq2 | |- ( A = B -> ( R Part A <-> R Part B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 | |- ( A = B -> ( ( dom R /. R ) = A <-> ( dom R /. R ) = B ) ) |
|
| 2 | 1 | anbi2d | |- ( A = B -> ( ( Disj R /\ ( dom R /. R ) = A ) <-> ( Disj R /\ ( dom R /. R ) = B ) ) ) |
| 3 | dfpart2 | |- ( R Part A <-> ( Disj R /\ ( dom R /. R ) = A ) ) |
|
| 4 | dfpart2 | |- ( R Part B <-> ( Disj R /\ ( dom R /. R ) = B ) ) |
|
| 5 | 2 3 4 | 3bitr4g | |- ( A = B -> ( R Part A <-> R Part B ) ) |