Description: Partition implies that the class of coelements on the natural domain is equal to the class of cosets of the relation, cf. erimeq . (Contributed by Peter Mazsa, 25-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | partimeq | |- ( R e. V -> ( R Part A -> ~ A = ,~ R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossex | |- ( R e. V -> ,~ R e. _V ) |
|
| 2 | partim | |- ( R Part A -> ,~ R ErALTV A ) |
|
| 3 | erimeq | |- ( ,~ R e. _V -> ( ,~ R ErALTV A -> ~ A = ,~ R ) ) |
|
| 4 | 1 2 3 | syl2im | |- ( R e. V -> ( R Part A -> ~ A = ,~ R ) ) |