Description: Two natural numbers are equal iff their successors are equal, i.e. the successor function is one-to-one. One of Peano's five postulates for arithmetic. Proposition 7.30(4) of TakeutiZaring p. 43. (Contributed by NM, 3-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | peano4 | |- ( ( A e. _om /\ B e. _om ) -> ( suc A = suc B <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon | |- ( A e. _om -> A e. On ) |
|
| 2 | nnon | |- ( B e. _om -> B e. On ) |
|
| 3 | suc11 | |- ( ( A e. On /\ B e. On ) -> ( suc A = suc B <-> A = B ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. _om /\ B e. _om ) -> ( suc A = suc B <-> A = B ) ) |