Metamath Proof Explorer


Theorem permaxinf2

Description: The Axiom of Infinity ax-inf2 holds in permutation models. Part of Exercise II.9.2 of Kunen2 p. 148. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses permmodel.1
|- F : _V -1-1-onto-> _V
permmodel.2
|- R = ( `' F o. _E )
Assertion permaxinf2
|- E. x ( E. y ( y R x /\ A. z -. z R y ) /\ A. y ( y R x -> E. z ( z R x /\ A. w ( w R z <-> ( w R y \/ w = y ) ) ) ) )

Proof

Step Hyp Ref Expression
1 permmodel.1
 |-  F : _V -1-1-onto-> _V
2 permmodel.2
 |-  R = ( `' F o. _E )
3 eqid
 |-  ( rec ( ( v e. _V |-> ( `' F ` ( ( F ` v ) u. { v } ) ) ) , ( `' F ` (/) ) ) " _om ) = ( rec ( ( v e. _V |-> ( `' F ` ( ( F ` v ) u. { v } ) ) ) , ( `' F ` (/) ) ) " _om )
4 1 2 3 permaxinf2lem
 |-  E. x ( E. y ( y R x /\ A. z -. z R y ) /\ A. y ( y R x -> E. z ( z R x /\ A. w ( w R z <-> ( w R y \/ w = y ) ) ) ) )