Metamath Proof Explorer


Theorem permaxinf2

Description: The Axiom of Infinity ax-inf2 holds in permutation models. Part of Exercise II.9.2 of Kunen2 p. 148. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses permmodel.1 𝐹 : V –1-1-onto→ V
permmodel.2 𝑅 = ( 𝐹 ∘ E )
Assertion permaxinf2 𝑥 ( ∃ 𝑦 ( 𝑦 𝑅 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 𝑅 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ( 𝑧 𝑅 𝑥 ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦𝑤 = 𝑦 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 permmodel.1 𝐹 : V –1-1-onto→ V
2 permmodel.2 𝑅 = ( 𝐹 ∘ E )
3 eqid ( rec ( ( 𝑣 ∈ V ↦ ( 𝐹 ‘ ( ( 𝐹𝑣 ) ∪ { 𝑣 } ) ) ) , ( 𝐹 ‘ ∅ ) ) “ ω ) = ( rec ( ( 𝑣 ∈ V ↦ ( 𝐹 ‘ ( ( 𝐹𝑣 ) ∪ { 𝑣 } ) ) ) , ( 𝐹 ‘ ∅ ) ) “ ω )
4 1 2 3 permaxinf2lem 𝑥 ( ∃ 𝑦 ( 𝑦 𝑅 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 𝑅 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ( 𝑧 𝑅 𝑥 ∧ ∀ 𝑤 ( 𝑤 𝑅 𝑧 ↔ ( 𝑤 𝑅 𝑦𝑤 = 𝑦 ) ) ) ) )