| Step |
Hyp |
Ref |
Expression |
| 1 |
|
permmodel.1 |
⊢ 𝐹 : V –1-1-onto→ V |
| 2 |
|
permmodel.2 |
⊢ 𝑅 = ( ◡ 𝐹 ∘ E ) |
| 3 |
|
df-ral |
⊢ ( ∀ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ( 𝐹 ‘ 𝑧 ) ≠ ∅ ↔ ∀ 𝑧 ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑧 ) ≠ ∅ ) ) |
| 4 |
|
f1ofn |
⊢ ( 𝐹 : V –1-1-onto→ V → 𝐹 Fn V ) |
| 5 |
1 4
|
ax-mp |
⊢ 𝐹 Fn V |
| 6 |
|
ssv |
⊢ ( 𝐹 ‘ 𝑥 ) ⊆ V |
| 7 |
|
neeq1 |
⊢ ( 𝑡 = ( 𝐹 ‘ 𝑧 ) → ( 𝑡 ≠ ∅ ↔ ( 𝐹 ‘ 𝑧 ) ≠ ∅ ) ) |
| 8 |
7
|
ralima |
⊢ ( ( 𝐹 Fn V ∧ ( 𝐹 ‘ 𝑥 ) ⊆ V ) → ( ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) 𝑡 ≠ ∅ ↔ ∀ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ( 𝐹 ‘ 𝑧 ) ≠ ∅ ) ) |
| 9 |
5 6 8
|
mp2an |
⊢ ( ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) 𝑡 ≠ ∅ ↔ ∀ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ( 𝐹 ‘ 𝑧 ) ≠ ∅ ) |
| 10 |
|
vex |
⊢ 𝑧 ∈ V |
| 11 |
|
vex |
⊢ 𝑥 ∈ V |
| 12 |
1 2 10 11
|
brpermmodel |
⊢ ( 𝑧 𝑅 𝑥 ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 13 |
|
vex |
⊢ 𝑤 ∈ V |
| 14 |
1 2 13 10
|
brpermmodel |
⊢ ( 𝑤 𝑅 𝑧 ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑧 ) ) |
| 15 |
14
|
exbii |
⊢ ( ∃ 𝑤 𝑤 𝑅 𝑧 ↔ ∃ 𝑤 𝑤 ∈ ( 𝐹 ‘ 𝑧 ) ) |
| 16 |
|
n0 |
⊢ ( ( 𝐹 ‘ 𝑧 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( 𝐹 ‘ 𝑧 ) ) |
| 17 |
15 16
|
bitr4i |
⊢ ( ∃ 𝑤 𝑤 𝑅 𝑧 ↔ ( 𝐹 ‘ 𝑧 ) ≠ ∅ ) |
| 18 |
12 17
|
imbi12i |
⊢ ( ( 𝑧 𝑅 𝑥 → ∃ 𝑤 𝑤 𝑅 𝑧 ) ↔ ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑧 ) ≠ ∅ ) ) |
| 19 |
18
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 𝑅 𝑥 → ∃ 𝑤 𝑤 𝑅 𝑧 ) ↔ ∀ 𝑧 ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑧 ) ≠ ∅ ) ) |
| 20 |
3 9 19
|
3bitr4i |
⊢ ( ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) 𝑡 ≠ ∅ ↔ ∀ 𝑧 ( 𝑧 𝑅 𝑥 → ∃ 𝑤 𝑤 𝑅 𝑧 ) ) |
| 21 |
|
neeq2 |
⊢ ( 𝑞 = ( 𝐹 ‘ 𝑤 ) → ( 𝑡 ≠ 𝑞 ↔ 𝑡 ≠ ( 𝐹 ‘ 𝑤 ) ) ) |
| 22 |
|
ineq2 |
⊢ ( 𝑞 = ( 𝐹 ‘ 𝑤 ) → ( 𝑡 ∩ 𝑞 ) = ( 𝑡 ∩ ( 𝐹 ‘ 𝑤 ) ) ) |
| 23 |
22
|
eqeq1d |
⊢ ( 𝑞 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝑡 ∩ 𝑞 ) = ∅ ↔ ( 𝑡 ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ) |
| 24 |
21 23
|
imbi12d |
⊢ ( 𝑞 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝑡 ≠ 𝑞 → ( 𝑡 ∩ 𝑞 ) = ∅ ) ↔ ( 𝑡 ≠ ( 𝐹 ‘ 𝑤 ) → ( 𝑡 ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ) ) |
| 25 |
24
|
ralima |
⊢ ( ( 𝐹 Fn V ∧ ( 𝐹 ‘ 𝑥 ) ⊆ V ) → ( ∀ 𝑞 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ( 𝑡 ≠ 𝑞 → ( 𝑡 ∩ 𝑞 ) = ∅ ) ↔ ∀ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ( 𝑡 ≠ ( 𝐹 ‘ 𝑤 ) → ( 𝑡 ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ) ) |
| 26 |
5 6 25
|
mp2an |
⊢ ( ∀ 𝑞 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ( 𝑡 ≠ 𝑞 → ( 𝑡 ∩ 𝑞 ) = ∅ ) ↔ ∀ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ( 𝑡 ≠ ( 𝐹 ‘ 𝑤 ) → ( 𝑡 ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ) |
| 27 |
26
|
ralbii |
⊢ ( ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∀ 𝑞 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ( 𝑡 ≠ 𝑞 → ( 𝑡 ∩ 𝑞 ) = ∅ ) ↔ ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∀ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ( 𝑡 ≠ ( 𝐹 ‘ 𝑤 ) → ( 𝑡 ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ) |
| 28 |
|
neeq1 |
⊢ ( 𝑡 = ( 𝐹 ‘ 𝑧 ) → ( 𝑡 ≠ ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) ) ) |
| 29 |
|
ineq1 |
⊢ ( 𝑡 = ( 𝐹 ‘ 𝑧 ) → ( 𝑡 ∩ ( 𝐹 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑧 ) ∩ ( 𝐹 ‘ 𝑤 ) ) ) |
| 30 |
29
|
eqeq1d |
⊢ ( 𝑡 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑡 ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ↔ ( ( 𝐹 ‘ 𝑧 ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ) |
| 31 |
28 30
|
imbi12d |
⊢ ( 𝑡 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑡 ≠ ( 𝐹 ‘ 𝑤 ) → ( 𝑡 ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ↔ ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ) ) |
| 32 |
31
|
ralbidv |
⊢ ( 𝑡 = ( 𝐹 ‘ 𝑧 ) → ( ∀ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ( 𝑡 ≠ ( 𝐹 ‘ 𝑤 ) → ( 𝑡 ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ↔ ∀ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ) ) |
| 33 |
32
|
ralima |
⊢ ( ( 𝐹 Fn V ∧ ( 𝐹 ‘ 𝑥 ) ⊆ V ) → ( ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∀ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ( 𝑡 ≠ ( 𝐹 ‘ 𝑤 ) → ( 𝑡 ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ↔ ∀ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ∀ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ) ) |
| 34 |
5 6 33
|
mp2an |
⊢ ( ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∀ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ( 𝑡 ≠ ( 𝐹 ‘ 𝑤 ) → ( 𝑡 ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ↔ ∀ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ∀ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ) |
| 35 |
|
r2al |
⊢ ( ∀ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ∀ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ∧ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ) ) |
| 36 |
27 34 35
|
3bitri |
⊢ ( ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∀ 𝑞 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ( 𝑡 ≠ 𝑞 → ( 𝑡 ∩ 𝑞 ) = ∅ ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ∧ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ) ) |
| 37 |
1 2 13 11
|
brpermmodel |
⊢ ( 𝑤 𝑅 𝑥 ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 38 |
12 37
|
anbi12i |
⊢ ( ( 𝑧 𝑅 𝑥 ∧ 𝑤 𝑅 𝑥 ) ↔ ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ∧ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 39 |
|
df-ne |
⊢ ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) ↔ ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 40 |
|
f1of1 |
⊢ ( 𝐹 : V –1-1-onto→ V → 𝐹 : V –1-1→ V ) |
| 41 |
1 40
|
ax-mp |
⊢ 𝐹 : V –1-1→ V |
| 42 |
|
f1fveq |
⊢ ( ( 𝐹 : V –1-1→ V ∧ ( 𝑧 ∈ V ∧ 𝑤 ∈ V ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ 𝑧 = 𝑤 ) ) |
| 43 |
41 42
|
mpan |
⊢ ( ( 𝑧 ∈ V ∧ 𝑤 ∈ V ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ 𝑧 = 𝑤 ) ) |
| 44 |
43
|
el2v |
⊢ ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ 𝑧 = 𝑤 ) |
| 45 |
44
|
notbii |
⊢ ( ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ¬ 𝑧 = 𝑤 ) |
| 46 |
39 45
|
bitr2i |
⊢ ( ¬ 𝑧 = 𝑤 ↔ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) ) |
| 47 |
|
vex |
⊢ 𝑦 ∈ V |
| 48 |
1 2 47 10
|
brpermmodel |
⊢ ( 𝑦 𝑅 𝑧 ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑧 ) ) |
| 49 |
1 2 47 13
|
brpermmodel |
⊢ ( 𝑦 𝑅 𝑤 ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑤 ) ) |
| 50 |
49
|
notbii |
⊢ ( ¬ 𝑦 𝑅 𝑤 ↔ ¬ 𝑦 ∈ ( 𝐹 ‘ 𝑤 ) ) |
| 51 |
48 50
|
imbi12i |
⊢ ( ( 𝑦 𝑅 𝑧 → ¬ 𝑦 𝑅 𝑤 ) ↔ ( 𝑦 ∈ ( 𝐹 ‘ 𝑧 ) → ¬ 𝑦 ∈ ( 𝐹 ‘ 𝑤 ) ) ) |
| 52 |
51
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 𝑅 𝑧 → ¬ 𝑦 𝑅 𝑤 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ( 𝐹 ‘ 𝑧 ) → ¬ 𝑦 ∈ ( 𝐹 ‘ 𝑤 ) ) ) |
| 53 |
|
disj1 |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ↔ ∀ 𝑦 ( 𝑦 ∈ ( 𝐹 ‘ 𝑧 ) → ¬ 𝑦 ∈ ( 𝐹 ‘ 𝑤 ) ) ) |
| 54 |
52 53
|
bitr4i |
⊢ ( ∀ 𝑦 ( 𝑦 𝑅 𝑧 → ¬ 𝑦 𝑅 𝑤 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) |
| 55 |
46 54
|
imbi12i |
⊢ ( ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ( 𝑦 𝑅 𝑧 → ¬ 𝑦 𝑅 𝑤 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ) |
| 56 |
38 55
|
imbi12i |
⊢ ( ( ( 𝑧 𝑅 𝑥 ∧ 𝑤 𝑅 𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ( 𝑦 𝑅 𝑧 → ¬ 𝑦 𝑅 𝑤 ) ) ) ↔ ( ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ∧ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ) ) |
| 57 |
56
|
2albii |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 𝑅 𝑥 ∧ 𝑤 𝑅 𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ( 𝑦 𝑅 𝑧 → ¬ 𝑦 𝑅 𝑤 ) ) ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ∧ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ∩ ( 𝐹 ‘ 𝑤 ) ) = ∅ ) ) ) |
| 58 |
36 57
|
bitr4i |
⊢ ( ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∀ 𝑞 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ( 𝑡 ≠ 𝑞 → ( 𝑡 ∩ 𝑞 ) = ∅ ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 𝑅 𝑥 ∧ 𝑤 𝑅 𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ( 𝑦 𝑅 𝑧 → ¬ 𝑦 𝑅 𝑤 ) ) ) ) |
| 59 |
|
f1ofun |
⊢ ( 𝐹 : V –1-1-onto→ V → Fun 𝐹 ) |
| 60 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
| 61 |
60
|
funimaex |
⊢ ( Fun 𝐹 → ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∈ V ) |
| 62 |
1 59 61
|
mp2b |
⊢ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∈ V |
| 63 |
|
raleq |
⊢ ( 𝑟 = ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) → ( ∀ 𝑡 ∈ 𝑟 𝑡 ≠ ∅ ↔ ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) 𝑡 ≠ ∅ ) ) |
| 64 |
|
raleq |
⊢ ( 𝑟 = ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) → ( ∀ 𝑞 ∈ 𝑟 ( 𝑡 ≠ 𝑞 → ( 𝑡 ∩ 𝑞 ) = ∅ ) ↔ ∀ 𝑞 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ( 𝑡 ≠ 𝑞 → ( 𝑡 ∩ 𝑞 ) = ∅ ) ) ) |
| 65 |
64
|
raleqbi1dv |
⊢ ( 𝑟 = ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) → ( ∀ 𝑡 ∈ 𝑟 ∀ 𝑞 ∈ 𝑟 ( 𝑡 ≠ 𝑞 → ( 𝑡 ∩ 𝑞 ) = ∅ ) ↔ ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∀ 𝑞 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ( 𝑡 ≠ 𝑞 → ( 𝑡 ∩ 𝑞 ) = ∅ ) ) ) |
| 66 |
63 65
|
anbi12d |
⊢ ( 𝑟 = ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) → ( ( ∀ 𝑡 ∈ 𝑟 𝑡 ≠ ∅ ∧ ∀ 𝑡 ∈ 𝑟 ∀ 𝑞 ∈ 𝑟 ( 𝑡 ≠ 𝑞 → ( 𝑡 ∩ 𝑞 ) = ∅ ) ) ↔ ( ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) 𝑡 ≠ ∅ ∧ ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∀ 𝑞 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ( 𝑡 ≠ 𝑞 → ( 𝑡 ∩ 𝑞 ) = ∅ ) ) ) ) |
| 67 |
|
raleq |
⊢ ( 𝑟 = ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) → ( ∀ 𝑡 ∈ 𝑟 ∃! 𝑣 𝑣 ∈ ( 𝑡 ∩ 𝑠 ) ↔ ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑣 𝑣 ∈ ( 𝑡 ∩ 𝑠 ) ) ) |
| 68 |
67
|
exbidv |
⊢ ( 𝑟 = ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) → ( ∃ 𝑠 ∀ 𝑡 ∈ 𝑟 ∃! 𝑣 𝑣 ∈ ( 𝑡 ∩ 𝑠 ) ↔ ∃ 𝑠 ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑣 𝑣 ∈ ( 𝑡 ∩ 𝑠 ) ) ) |
| 69 |
66 68
|
imbi12d |
⊢ ( 𝑟 = ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) → ( ( ( ∀ 𝑡 ∈ 𝑟 𝑡 ≠ ∅ ∧ ∀ 𝑡 ∈ 𝑟 ∀ 𝑞 ∈ 𝑟 ( 𝑡 ≠ 𝑞 → ( 𝑡 ∩ 𝑞 ) = ∅ ) ) → ∃ 𝑠 ∀ 𝑡 ∈ 𝑟 ∃! 𝑣 𝑣 ∈ ( 𝑡 ∩ 𝑠 ) ) ↔ ( ( ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) 𝑡 ≠ ∅ ∧ ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∀ 𝑞 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ( 𝑡 ≠ 𝑞 → ( 𝑡 ∩ 𝑞 ) = ∅ ) ) → ∃ 𝑠 ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑣 𝑣 ∈ ( 𝑡 ∩ 𝑠 ) ) ) ) |
| 70 |
|
ac8 |
⊢ ( ( ∀ 𝑡 ∈ 𝑟 𝑡 ≠ ∅ ∧ ∀ 𝑡 ∈ 𝑟 ∀ 𝑞 ∈ 𝑟 ( 𝑡 ≠ 𝑞 → ( 𝑡 ∩ 𝑞 ) = ∅ ) ) → ∃ 𝑠 ∀ 𝑡 ∈ 𝑟 ∃! 𝑣 𝑣 ∈ ( 𝑡 ∩ 𝑠 ) ) |
| 71 |
62 69 70
|
vtocl |
⊢ ( ( ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) 𝑡 ≠ ∅ ∧ ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∀ 𝑞 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ( 𝑡 ≠ 𝑞 → ( 𝑡 ∩ 𝑞 ) = ∅ ) ) → ∃ 𝑠 ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑣 𝑣 ∈ ( 𝑡 ∩ 𝑠 ) ) |
| 72 |
20 58 71
|
syl2anbr |
⊢ ( ( ∀ 𝑧 ( 𝑧 𝑅 𝑥 → ∃ 𝑤 𝑤 𝑅 𝑧 ) ∧ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 𝑅 𝑥 ∧ 𝑤 𝑅 𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ( 𝑦 𝑅 𝑧 → ¬ 𝑦 𝑅 𝑤 ) ) ) ) → ∃ 𝑠 ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑣 𝑣 ∈ ( 𝑡 ∩ 𝑠 ) ) |
| 73 |
|
ineq1 |
⊢ ( 𝑡 = ( 𝐹 ‘ 𝑧 ) → ( 𝑡 ∩ 𝑠 ) = ( ( 𝐹 ‘ 𝑧 ) ∩ 𝑠 ) ) |
| 74 |
73
|
eleq2d |
⊢ ( 𝑡 = ( 𝐹 ‘ 𝑧 ) → ( 𝑣 ∈ ( 𝑡 ∩ 𝑠 ) ↔ 𝑣 ∈ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝑠 ) ) ) |
| 75 |
74
|
eubidv |
⊢ ( 𝑡 = ( 𝐹 ‘ 𝑧 ) → ( ∃! 𝑣 𝑣 ∈ ( 𝑡 ∩ 𝑠 ) ↔ ∃! 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝑠 ) ) ) |
| 76 |
75
|
ralima |
⊢ ( ( 𝐹 Fn V ∧ ( 𝐹 ‘ 𝑥 ) ⊆ V ) → ( ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑣 𝑣 ∈ ( 𝑡 ∩ 𝑠 ) ↔ ∀ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ∃! 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝑠 ) ) ) |
| 77 |
5 6 76
|
mp2an |
⊢ ( ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑣 𝑣 ∈ ( 𝑡 ∩ 𝑠 ) ↔ ∀ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ∃! 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝑠 ) ) |
| 78 |
|
df-ral |
⊢ ( ∀ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ∃! 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝑠 ) ↔ ∀ 𝑧 ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) → ∃! 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝑠 ) ) ) |
| 79 |
77 78
|
bitri |
⊢ ( ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑣 𝑣 ∈ ( 𝑡 ∩ 𝑠 ) ↔ ∀ 𝑧 ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) → ∃! 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝑠 ) ) ) |
| 80 |
|
fvex |
⊢ ( ◡ 𝐹 ‘ 𝑠 ) ∈ V |
| 81 |
12
|
a1i |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑠 ) → ( 𝑧 𝑅 𝑥 ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 82 |
|
vex |
⊢ 𝑣 ∈ V |
| 83 |
1 2 82 10
|
brpermmodel |
⊢ ( 𝑣 𝑅 𝑧 ↔ 𝑣 ∈ ( 𝐹 ‘ 𝑧 ) ) |
| 84 |
83
|
a1i |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑠 ) → ( 𝑣 𝑅 𝑧 ↔ 𝑣 ∈ ( 𝐹 ‘ 𝑧 ) ) ) |
| 85 |
|
breq2 |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑠 ) → ( 𝑣 𝑅 𝑦 ↔ 𝑣 𝑅 ( ◡ 𝐹 ‘ 𝑠 ) ) ) |
| 86 |
|
vex |
⊢ 𝑠 ∈ V |
| 87 |
1 2 82 86
|
brpermmodelcnv |
⊢ ( 𝑣 𝑅 ( ◡ 𝐹 ‘ 𝑠 ) ↔ 𝑣 ∈ 𝑠 ) |
| 88 |
85 87
|
bitrdi |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑠 ) → ( 𝑣 𝑅 𝑦 ↔ 𝑣 ∈ 𝑠 ) ) |
| 89 |
84 88
|
anbi12d |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑠 ) → ( ( 𝑣 𝑅 𝑧 ∧ 𝑣 𝑅 𝑦 ) ↔ ( 𝑣 ∈ ( 𝐹 ‘ 𝑧 ) ∧ 𝑣 ∈ 𝑠 ) ) ) |
| 90 |
89
|
bibi1d |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑠 ) → ( ( ( 𝑣 𝑅 𝑧 ∧ 𝑣 𝑅 𝑦 ) ↔ 𝑣 = 𝑤 ) ↔ ( ( 𝑣 ∈ ( 𝐹 ‘ 𝑧 ) ∧ 𝑣 ∈ 𝑠 ) ↔ 𝑣 = 𝑤 ) ) ) |
| 91 |
90
|
albidv |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑠 ) → ( ∀ 𝑣 ( ( 𝑣 𝑅 𝑧 ∧ 𝑣 𝑅 𝑦 ) ↔ 𝑣 = 𝑤 ) ↔ ∀ 𝑣 ( ( 𝑣 ∈ ( 𝐹 ‘ 𝑧 ) ∧ 𝑣 ∈ 𝑠 ) ↔ 𝑣 = 𝑤 ) ) ) |
| 92 |
91
|
exbidv |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑠 ) → ( ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 𝑅 𝑧 ∧ 𝑣 𝑅 𝑦 ) ↔ 𝑣 = 𝑤 ) ↔ ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 ∈ ( 𝐹 ‘ 𝑧 ) ∧ 𝑣 ∈ 𝑠 ) ↔ 𝑣 = 𝑤 ) ) ) |
| 93 |
|
elin |
⊢ ( 𝑣 ∈ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝑠 ) ↔ ( 𝑣 ∈ ( 𝐹 ‘ 𝑧 ) ∧ 𝑣 ∈ 𝑠 ) ) |
| 94 |
93
|
eubii |
⊢ ( ∃! 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝑠 ) ↔ ∃! 𝑣 ( 𝑣 ∈ ( 𝐹 ‘ 𝑧 ) ∧ 𝑣 ∈ 𝑠 ) ) |
| 95 |
|
eu6 |
⊢ ( ∃! 𝑣 ( 𝑣 ∈ ( 𝐹 ‘ 𝑧 ) ∧ 𝑣 ∈ 𝑠 ) ↔ ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 ∈ ( 𝐹 ‘ 𝑧 ) ∧ 𝑣 ∈ 𝑠 ) ↔ 𝑣 = 𝑤 ) ) |
| 96 |
94 95
|
bitri |
⊢ ( ∃! 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝑠 ) ↔ ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 ∈ ( 𝐹 ‘ 𝑧 ) ∧ 𝑣 ∈ 𝑠 ) ↔ 𝑣 = 𝑤 ) ) |
| 97 |
92 96
|
bitr4di |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑠 ) → ( ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 𝑅 𝑧 ∧ 𝑣 𝑅 𝑦 ) ↔ 𝑣 = 𝑤 ) ↔ ∃! 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝑠 ) ) ) |
| 98 |
81 97
|
imbi12d |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑠 ) → ( ( 𝑧 𝑅 𝑥 → ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 𝑅 𝑧 ∧ 𝑣 𝑅 𝑦 ) ↔ 𝑣 = 𝑤 ) ) ↔ ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) → ∃! 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝑠 ) ) ) ) |
| 99 |
98
|
albidv |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ 𝑠 ) → ( ∀ 𝑧 ( 𝑧 𝑅 𝑥 → ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 𝑅 𝑧 ∧ 𝑣 𝑅 𝑦 ) ↔ 𝑣 = 𝑤 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) → ∃! 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝑠 ) ) ) ) |
| 100 |
80 99
|
spcev |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) → ∃! 𝑣 𝑣 ∈ ( ( 𝐹 ‘ 𝑧 ) ∩ 𝑠 ) ) → ∃ 𝑦 ∀ 𝑧 ( 𝑧 𝑅 𝑥 → ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 𝑅 𝑧 ∧ 𝑣 𝑅 𝑦 ) ↔ 𝑣 = 𝑤 ) ) ) |
| 101 |
79 100
|
sylbi |
⊢ ( ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑣 𝑣 ∈ ( 𝑡 ∩ 𝑠 ) → ∃ 𝑦 ∀ 𝑧 ( 𝑧 𝑅 𝑥 → ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 𝑅 𝑧 ∧ 𝑣 𝑅 𝑦 ) ↔ 𝑣 = 𝑤 ) ) ) |
| 102 |
101
|
exlimiv |
⊢ ( ∃ 𝑠 ∀ 𝑡 ∈ ( 𝐹 “ ( 𝐹 ‘ 𝑥 ) ) ∃! 𝑣 𝑣 ∈ ( 𝑡 ∩ 𝑠 ) → ∃ 𝑦 ∀ 𝑧 ( 𝑧 𝑅 𝑥 → ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 𝑅 𝑧 ∧ 𝑣 𝑅 𝑦 ) ↔ 𝑣 = 𝑤 ) ) ) |
| 103 |
72 102
|
syl |
⊢ ( ( ∀ 𝑧 ( 𝑧 𝑅 𝑥 → ∃ 𝑤 𝑤 𝑅 𝑧 ) ∧ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 𝑅 𝑥 ∧ 𝑤 𝑅 𝑥 ) → ( ¬ 𝑧 = 𝑤 → ∀ 𝑦 ( 𝑦 𝑅 𝑧 → ¬ 𝑦 𝑅 𝑤 ) ) ) ) → ∃ 𝑦 ∀ 𝑧 ( 𝑧 𝑅 𝑥 → ∃ 𝑤 ∀ 𝑣 ( ( 𝑣 𝑅 𝑧 ∧ 𝑣 𝑅 𝑦 ) ↔ 𝑣 = 𝑤 ) ) ) |