Metamath Proof Explorer


Theorem brpermmodelcnv

Description: Ordinary membership expressed in terms of the permutation model's membership relation. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses permmodel.1 𝐹 : V –1-1-onto→ V
permmodel.2 𝑅 = ( 𝐹 ∘ E )
brpermmodel.3 𝐴 ∈ V
brpermmodel.4 𝐵 ∈ V
Assertion brpermmodelcnv ( 𝐴 𝑅 ( 𝐹𝐵 ) ↔ 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 permmodel.1 𝐹 : V –1-1-onto→ V
2 permmodel.2 𝑅 = ( 𝐹 ∘ E )
3 brpermmodel.3 𝐴 ∈ V
4 brpermmodel.4 𝐵 ∈ V
5 fvex ( 𝐹𝐵 ) ∈ V
6 1 2 3 5 brpermmodel ( 𝐴 𝑅 ( 𝐹𝐵 ) ↔ 𝐴 ∈ ( 𝐹 ‘ ( 𝐹𝐵 ) ) )
7 f1ocnvfv2 ( ( 𝐹 : V –1-1-onto→ V ∧ 𝐵 ∈ V ) → ( 𝐹 ‘ ( 𝐹𝐵 ) ) = 𝐵 )
8 1 4 7 mp2an ( 𝐹 ‘ ( 𝐹𝐵 ) ) = 𝐵
9 8 eleq2i ( 𝐴 ∈ ( 𝐹 ‘ ( 𝐹𝐵 ) ) ↔ 𝐴𝐵 )
10 6 9 bitri ( 𝐴 𝑅 ( 𝐹𝐵 ) ↔ 𝐴𝐵 )