Description: Ordinary membership expressed in terms of the permutation model's membership relation. (Contributed by Eric Schmidt, 6-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | permmodel.1 | ⊢ 𝐹 : V –1-1-onto→ V | |
| permmodel.2 | ⊢ 𝑅 = ( ◡ 𝐹 ∘ E ) | ||
| brpermmodel.3 | ⊢ 𝐴 ∈ V | ||
| brpermmodel.4 | ⊢ 𝐵 ∈ V | ||
| Assertion | brpermmodelcnv | ⊢ ( 𝐴 𝑅 ( ◡ 𝐹 ‘ 𝐵 ) ↔ 𝐴 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | permmodel.1 | ⊢ 𝐹 : V –1-1-onto→ V | |
| 2 | permmodel.2 | ⊢ 𝑅 = ( ◡ 𝐹 ∘ E ) | |
| 3 | brpermmodel.3 | ⊢ 𝐴 ∈ V | |
| 4 | brpermmodel.4 | ⊢ 𝐵 ∈ V | |
| 5 | fvex | ⊢ ( ◡ 𝐹 ‘ 𝐵 ) ∈ V | |
| 6 | 1 2 3 5 | brpermmodel | ⊢ ( 𝐴 𝑅 ( ◡ 𝐹 ‘ 𝐵 ) ↔ 𝐴 ∈ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐵 ) ) ) |
| 7 | f1ocnvfv2 | ⊢ ( ( 𝐹 : V –1-1-onto→ V ∧ 𝐵 ∈ V ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐵 ) ) = 𝐵 ) | |
| 8 | 1 4 7 | mp2an | ⊢ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐵 ) ) = 𝐵 |
| 9 | 8 | eleq2i | ⊢ ( 𝐴 ∈ ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝐵 ) ) ↔ 𝐴 ∈ 𝐵 ) |
| 10 | 6 9 | bitri | ⊢ ( 𝐴 𝑅 ( ◡ 𝐹 ‘ 𝐵 ) ↔ 𝐴 ∈ 𝐵 ) |