Description: Ordinary membership expressed in terms of the permutation model's membership relation. (Contributed by Eric Schmidt, 6-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | permmodel.1 | |- F : _V -1-1-onto-> _V |
|
| permmodel.2 | |- R = ( `' F o. _E ) |
||
| brpermmodel.3 | |- A e. _V |
||
| brpermmodel.4 | |- B e. _V |
||
| Assertion | brpermmodelcnv | |- ( A R ( `' F ` B ) <-> A e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | permmodel.1 | |- F : _V -1-1-onto-> _V |
|
| 2 | permmodel.2 | |- R = ( `' F o. _E ) |
|
| 3 | brpermmodel.3 | |- A e. _V |
|
| 4 | brpermmodel.4 | |- B e. _V |
|
| 5 | fvex | |- ( `' F ` B ) e. _V |
|
| 6 | 1 2 3 5 | brpermmodel | |- ( A R ( `' F ` B ) <-> A e. ( F ` ( `' F ` B ) ) ) |
| 7 | f1ocnvfv2 | |- ( ( F : _V -1-1-onto-> _V /\ B e. _V ) -> ( F ` ( `' F ` B ) ) = B ) |
|
| 8 | 1 4 7 | mp2an | |- ( F ` ( `' F ` B ) ) = B |
| 9 | 8 | eleq2i | |- ( A e. ( F ` ( `' F ` B ) ) <-> A e. B ) |
| 10 | 6 9 | bitri | |- ( A R ( `' F ` B ) <-> A e. B ) |