Metamath Proof Explorer


Theorem brpermmodelcnv

Description: Ordinary membership expressed in terms of the permutation model's membership relation. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses permmodel.1
|- F : _V -1-1-onto-> _V
permmodel.2
|- R = ( `' F o. _E )
brpermmodel.3
|- A e. _V
brpermmodel.4
|- B e. _V
Assertion brpermmodelcnv
|- ( A R ( `' F ` B ) <-> A e. B )

Proof

Step Hyp Ref Expression
1 permmodel.1
 |-  F : _V -1-1-onto-> _V
2 permmodel.2
 |-  R = ( `' F o. _E )
3 brpermmodel.3
 |-  A e. _V
4 brpermmodel.4
 |-  B e. _V
5 fvex
 |-  ( `' F ` B ) e. _V
6 1 2 3 5 brpermmodel
 |-  ( A R ( `' F ` B ) <-> A e. ( F ` ( `' F ` B ) ) )
7 f1ocnvfv2
 |-  ( ( F : _V -1-1-onto-> _V /\ B e. _V ) -> ( F ` ( `' F ` B ) ) = B )
8 1 4 7 mp2an
 |-  ( F ` ( `' F ` B ) ) = B
9 8 eleq2i
 |-  ( A e. ( F ` ( `' F ` B ) ) <-> A e. B )
10 6 9 bitri
 |-  ( A R ( `' F ` B ) <-> A e. B )