Metamath Proof Explorer


Theorem permaxext

Description: The Axiom of Extensionality ax-ext holds in permutation models. Part of Exercise II.9.2 of Kunen2 p. 148. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses permmodel.1
|- F : _V -1-1-onto-> _V
permmodel.2
|- R = ( `' F o. _E )
Assertion permaxext
|- ( A. z ( z R x <-> z R y ) -> x = y )

Proof

Step Hyp Ref Expression
1 permmodel.1
 |-  F : _V -1-1-onto-> _V
2 permmodel.2
 |-  R = ( `' F o. _E )
3 vex
 |-  z e. _V
4 vex
 |-  x e. _V
5 1 2 3 4 brpermmodel
 |-  ( z R x <-> z e. ( F ` x ) )
6 vex
 |-  y e. _V
7 1 2 3 6 brpermmodel
 |-  ( z R y <-> z e. ( F ` y ) )
8 5 7 bibi12i
 |-  ( ( z R x <-> z R y ) <-> ( z e. ( F ` x ) <-> z e. ( F ` y ) ) )
9 8 albii
 |-  ( A. z ( z R x <-> z R y ) <-> A. z ( z e. ( F ` x ) <-> z e. ( F ` y ) ) )
10 dfcleq
 |-  ( ( F ` x ) = ( F ` y ) <-> A. z ( z e. ( F ` x ) <-> z e. ( F ` y ) ) )
11 9 10 bitr4i
 |-  ( A. z ( z R x <-> z R y ) <-> ( F ` x ) = ( F ` y ) )
12 f1of1
 |-  ( F : _V -1-1-onto-> _V -> F : _V -1-1-> _V )
13 1 12 ax-mp
 |-  F : _V -1-1-> _V
14 f1veqaeq
 |-  ( ( F : _V -1-1-> _V /\ ( x e. _V /\ y e. _V ) ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) )
15 13 14 mpan
 |-  ( ( x e. _V /\ y e. _V ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) )
16 15 el2v
 |-  ( ( F ` x ) = ( F ` y ) -> x = y )
17 11 16 sylbi
 |-  ( A. z ( z R x <-> z R y ) -> x = y )