| Step |
Hyp |
Ref |
Expression |
| 1 |
|
permmodel.1 |
⊢ 𝐹 : V –1-1-onto→ V |
| 2 |
|
permmodel.2 |
⊢ 𝑅 = ( ◡ 𝐹 ∘ E ) |
| 3 |
|
vex |
⊢ 𝑧 ∈ V |
| 4 |
|
vex |
⊢ 𝑥 ∈ V |
| 5 |
1 2 3 4
|
brpermmodel |
⊢ ( 𝑧 𝑅 𝑥 ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 6 |
|
vex |
⊢ 𝑦 ∈ V |
| 7 |
1 2 3 6
|
brpermmodel |
⊢ ( 𝑧 𝑅 𝑦 ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑦 ) ) |
| 8 |
5 7
|
bibi12i |
⊢ ( ( 𝑧 𝑅 𝑥 ↔ 𝑧 𝑅 𝑦 ) ↔ ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
| 9 |
8
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 𝑅 𝑥 ↔ 𝑧 𝑅 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
| 10 |
|
dfcleq |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ ( 𝐹 ‘ 𝑥 ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑦 ) ) ) |
| 11 |
9 10
|
bitr4i |
⊢ ( ∀ 𝑧 ( 𝑧 𝑅 𝑥 ↔ 𝑧 𝑅 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 12 |
|
f1of1 |
⊢ ( 𝐹 : V –1-1-onto→ V → 𝐹 : V –1-1→ V ) |
| 13 |
1 12
|
ax-mp |
⊢ 𝐹 : V –1-1→ V |
| 14 |
|
f1veqaeq |
⊢ ( ( 𝐹 : V –1-1→ V ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 15 |
13 14
|
mpan |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 16 |
15
|
el2v |
⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
| 17 |
11 16
|
sylbi |
⊢ ( ∀ 𝑧 ( 𝑧 𝑅 𝑥 ↔ 𝑧 𝑅 𝑦 ) → 𝑥 = 𝑦 ) |