Metamath Proof Explorer


Theorem permaxext

Description: The Axiom of Extensionality ax-ext holds in permutation models. Part of Exercise II.9.2 of Kunen2 p. 148. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses permmodel.1 𝐹 : V –1-1-onto→ V
permmodel.2 𝑅 = ( 𝐹 ∘ E )
Assertion permaxext ( ∀ 𝑧 ( 𝑧 𝑅 𝑥𝑧 𝑅 𝑦 ) → 𝑥 = 𝑦 )

Proof

Step Hyp Ref Expression
1 permmodel.1 𝐹 : V –1-1-onto→ V
2 permmodel.2 𝑅 = ( 𝐹 ∘ E )
3 vex 𝑧 ∈ V
4 vex 𝑥 ∈ V
5 1 2 3 4 brpermmodel ( 𝑧 𝑅 𝑥𝑧 ∈ ( 𝐹𝑥 ) )
6 vex 𝑦 ∈ V
7 1 2 3 6 brpermmodel ( 𝑧 𝑅 𝑦𝑧 ∈ ( 𝐹𝑦 ) )
8 5 7 bibi12i ( ( 𝑧 𝑅 𝑥𝑧 𝑅 𝑦 ) ↔ ( 𝑧 ∈ ( 𝐹𝑥 ) ↔ 𝑧 ∈ ( 𝐹𝑦 ) ) )
9 8 albii ( ∀ 𝑧 ( 𝑧 𝑅 𝑥𝑧 𝑅 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ ( 𝐹𝑥 ) ↔ 𝑧 ∈ ( 𝐹𝑦 ) ) )
10 dfcleq ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ ( 𝐹𝑥 ) ↔ 𝑧 ∈ ( 𝐹𝑦 ) ) )
11 9 10 bitr4i ( ∀ 𝑧 ( 𝑧 𝑅 𝑥𝑧 𝑅 𝑦 ) ↔ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
12 f1of1 ( 𝐹 : V –1-1-onto→ V → 𝐹 : V –1-1→ V )
13 1 12 ax-mp 𝐹 : V –1-1→ V
14 f1veqaeq ( ( 𝐹 : V –1-1→ V ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) )
15 13 14 mpan ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) )
16 15 el2v ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 )
17 11 16 sylbi ( ∀ 𝑧 ( 𝑧 𝑅 𝑥𝑧 𝑅 𝑦 ) → 𝑥 = 𝑦 )