| Step |
Hyp |
Ref |
Expression |
| 1 |
|
permmodel.1 |
⊢ 𝐹 : V –1-1-onto→ V |
| 2 |
|
permmodel.2 |
⊢ 𝑅 = ( ◡ 𝐹 ∘ E ) |
| 3 |
|
brpermmodel.3 |
⊢ 𝐴 ∈ V |
| 4 |
|
brpermmodel.4 |
⊢ 𝐵 ∈ V |
| 5 |
|
epel |
⊢ ( 𝐴 E 𝑥 ↔ 𝐴 ∈ 𝑥 ) |
| 6 |
|
vex |
⊢ 𝑥 ∈ V |
| 7 |
6 4
|
brcnv |
⊢ ( 𝑥 ◡ 𝐹 𝐵 ↔ 𝐵 𝐹 𝑥 ) |
| 8 |
5 7
|
anbi12i |
⊢ ( ( 𝐴 E 𝑥 ∧ 𝑥 ◡ 𝐹 𝐵 ) ↔ ( 𝐴 ∈ 𝑥 ∧ 𝐵 𝐹 𝑥 ) ) |
| 9 |
8
|
exbii |
⊢ ( ∃ 𝑥 ( 𝐴 E 𝑥 ∧ 𝑥 ◡ 𝐹 𝐵 ) ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝐵 𝐹 𝑥 ) ) |
| 10 |
2
|
breqi |
⊢ ( 𝐴 𝑅 𝐵 ↔ 𝐴 ( ◡ 𝐹 ∘ E ) 𝐵 ) |
| 11 |
3 4
|
brco |
⊢ ( 𝐴 ( ◡ 𝐹 ∘ E ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 E 𝑥 ∧ 𝑥 ◡ 𝐹 𝐵 ) ) |
| 12 |
10 11
|
bitri |
⊢ ( 𝐴 𝑅 𝐵 ↔ ∃ 𝑥 ( 𝐴 E 𝑥 ∧ 𝑥 ◡ 𝐹 𝐵 ) ) |
| 13 |
|
f1ofn |
⊢ ( 𝐹 : V –1-1-onto→ V → 𝐹 Fn V ) |
| 14 |
1 13
|
ax-mp |
⊢ 𝐹 Fn V |
| 15 |
|
fneu |
⊢ ( ( 𝐹 Fn V ∧ 𝐵 ∈ V ) → ∃! 𝑥 𝐵 𝐹 𝑥 ) |
| 16 |
14 4 15
|
mp2an |
⊢ ∃! 𝑥 𝐵 𝐹 𝑥 |
| 17 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ) |
| 18 |
17
|
anbi1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ∈ 𝑥 ∧ 𝐵 𝐹 𝑥 ) ↔ ( 𝐴 ∈ 𝑥 ∧ 𝐵 𝐹 𝑥 ) ) ) |
| 19 |
18
|
exbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝐵 𝐹 𝑥 ) ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝐵 𝐹 𝑥 ) ) ) |
| 20 |
19
|
anbi1d |
⊢ ( 𝑦 = 𝐴 → ( ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝐵 𝐹 𝑥 ) ∧ ∃! 𝑥 𝐵 𝐹 𝑥 ) ↔ ( ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝐵 𝐹 𝑥 ) ∧ ∃! 𝑥 𝐵 𝐹 𝑥 ) ) ) |
| 21 |
|
fv3 |
⊢ ( 𝐹 ‘ 𝐵 ) = { 𝑦 ∣ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝐵 𝐹 𝑥 ) ∧ ∃! 𝑥 𝐵 𝐹 𝑥 ) } |
| 22 |
3 20 21
|
elab2 |
⊢ ( 𝐴 ∈ ( 𝐹 ‘ 𝐵 ) ↔ ( ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝐵 𝐹 𝑥 ) ∧ ∃! 𝑥 𝐵 𝐹 𝑥 ) ) |
| 23 |
16 22
|
mpbiran2 |
⊢ ( 𝐴 ∈ ( 𝐹 ‘ 𝐵 ) ↔ ∃ 𝑥 ( 𝐴 ∈ 𝑥 ∧ 𝐵 𝐹 𝑥 ) ) |
| 24 |
9 12 23
|
3bitr4i |
⊢ ( 𝐴 𝑅 𝐵 ↔ 𝐴 ∈ ( 𝐹 ‘ 𝐵 ) ) |