| Step |
Hyp |
Ref |
Expression |
| 1 |
|
permmodel.1 |
|- F : _V -1-1-onto-> _V |
| 2 |
|
permmodel.2 |
|- R = ( `' F o. _E ) |
| 3 |
|
brpermmodel.3 |
|- A e. _V |
| 4 |
|
brpermmodel.4 |
|- B e. _V |
| 5 |
|
epel |
|- ( A _E x <-> A e. x ) |
| 6 |
|
vex |
|- x e. _V |
| 7 |
6 4
|
brcnv |
|- ( x `' F B <-> B F x ) |
| 8 |
5 7
|
anbi12i |
|- ( ( A _E x /\ x `' F B ) <-> ( A e. x /\ B F x ) ) |
| 9 |
8
|
exbii |
|- ( E. x ( A _E x /\ x `' F B ) <-> E. x ( A e. x /\ B F x ) ) |
| 10 |
2
|
breqi |
|- ( A R B <-> A ( `' F o. _E ) B ) |
| 11 |
3 4
|
brco |
|- ( A ( `' F o. _E ) B <-> E. x ( A _E x /\ x `' F B ) ) |
| 12 |
10 11
|
bitri |
|- ( A R B <-> E. x ( A _E x /\ x `' F B ) ) |
| 13 |
|
f1ofn |
|- ( F : _V -1-1-onto-> _V -> F Fn _V ) |
| 14 |
1 13
|
ax-mp |
|- F Fn _V |
| 15 |
|
fneu |
|- ( ( F Fn _V /\ B e. _V ) -> E! x B F x ) |
| 16 |
14 4 15
|
mp2an |
|- E! x B F x |
| 17 |
|
eleq1 |
|- ( y = A -> ( y e. x <-> A e. x ) ) |
| 18 |
17
|
anbi1d |
|- ( y = A -> ( ( y e. x /\ B F x ) <-> ( A e. x /\ B F x ) ) ) |
| 19 |
18
|
exbidv |
|- ( y = A -> ( E. x ( y e. x /\ B F x ) <-> E. x ( A e. x /\ B F x ) ) ) |
| 20 |
19
|
anbi1d |
|- ( y = A -> ( ( E. x ( y e. x /\ B F x ) /\ E! x B F x ) <-> ( E. x ( A e. x /\ B F x ) /\ E! x B F x ) ) ) |
| 21 |
|
fv3 |
|- ( F ` B ) = { y | ( E. x ( y e. x /\ B F x ) /\ E! x B F x ) } |
| 22 |
3 20 21
|
elab2 |
|- ( A e. ( F ` B ) <-> ( E. x ( A e. x /\ B F x ) /\ E! x B F x ) ) |
| 23 |
16 22
|
mpbiran2 |
|- ( A e. ( F ` B ) <-> E. x ( A e. x /\ B F x ) ) |
| 24 |
9 12 23
|
3bitr4i |
|- ( A R B <-> A e. ( F ` B ) ) |