Metamath Proof Explorer


Theorem permaxrep

Description: The Axiom of Replacement ax-rep holds in permutation models. Part of Exercise II.9.2 of Kunen2 p. 148.

Note that, to prove that an instance of Replacement holds in the model, ph would need have all instances of e. replaced with R . But this still results in an instance of this theorem, so we do establish that Replacement holds. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses permmodel.1 𝐹 : V –1-1-onto→ V
permmodel.2 𝑅 = ( 𝐹 ∘ E )
Assertion permaxrep ( ∀ 𝑤𝑦𝑧 ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) → ∃ 𝑦𝑧 ( 𝑧 𝑅 𝑦 ↔ ∃ 𝑤 ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 permmodel.1 𝐹 : V –1-1-onto→ V
2 permmodel.2 𝑅 = ( 𝐹 ∘ E )
3 nfa1 𝑦𝑦 𝜑
4 3 mof ( ∃* 𝑧𝑦 𝜑 ↔ ∃ 𝑦𝑧 ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) )
5 4 albii ( ∀ 𝑤 ∃* 𝑧𝑦 𝜑 ↔ ∀ 𝑤𝑦𝑧 ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) )
6 fvex ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) ∈ V
7 nfmo1 𝑧 ∃* 𝑧𝑦 𝜑
8 7 nfal 𝑧𝑤 ∃* 𝑧𝑦 𝜑
9 vex 𝑧 ∈ V
10 1 2 9 6 brpermmodel ( 𝑧 𝑅 ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) ↔ 𝑧 ∈ ( 𝐹 ‘ ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) ) )
11 fvex ( 𝐹𝑥 ) ∈ V
12 axrep6g ( ( ( 𝐹𝑥 ) ∈ V ∧ ∀ 𝑤 ∃* 𝑧𝑦 𝜑 ) → { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ∈ V )
13 11 12 mpan ( ∀ 𝑤 ∃* 𝑧𝑦 𝜑 → { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ∈ V )
14 f1ocnvfv2 ( ( 𝐹 : V –1-1-onto→ V ∧ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ∈ V ) → ( 𝐹 ‘ ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) ) = { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } )
15 1 13 14 sylancr ( ∀ 𝑤 ∃* 𝑧𝑦 𝜑 → ( 𝐹 ‘ ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) ) = { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } )
16 15 eleq2d ( ∀ 𝑤 ∃* 𝑧𝑦 𝜑 → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) ) ↔ 𝑧 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) )
17 10 16 bitrid ( ∀ 𝑤 ∃* 𝑧𝑦 𝜑 → ( 𝑧 𝑅 ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) ↔ 𝑧 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) )
18 df-rex ( ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 ↔ ∃ 𝑤 ( 𝑤 ∈ ( 𝐹𝑥 ) ∧ ∀ 𝑦 𝜑 ) )
19 abid ( 𝑧 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ↔ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 )
20 vex 𝑤 ∈ V
21 vex 𝑥 ∈ V
22 1 2 20 21 brpermmodel ( 𝑤 𝑅 𝑥𝑤 ∈ ( 𝐹𝑥 ) )
23 22 anbi1i ( ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 ) ↔ ( 𝑤 ∈ ( 𝐹𝑥 ) ∧ ∀ 𝑦 𝜑 ) )
24 23 exbii ( ∃ 𝑤 ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 ) ↔ ∃ 𝑤 ( 𝑤 ∈ ( 𝐹𝑥 ) ∧ ∀ 𝑦 𝜑 ) )
25 18 19 24 3bitr4i ( 𝑧 ∈ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ↔ ∃ 𝑤 ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 ) )
26 17 25 bitrdi ( ∀ 𝑤 ∃* 𝑧𝑦 𝜑 → ( 𝑧 𝑅 ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) ↔ ∃ 𝑤 ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
27 8 26 alrimi ( ∀ 𝑤 ∃* 𝑧𝑦 𝜑 → ∀ 𝑧 ( 𝑧 𝑅 ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) ↔ ∃ 𝑤 ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
28 nfcv 𝑦 𝐹
29 nfcv 𝑦 ( 𝐹𝑥 )
30 29 3 nfrexw 𝑦𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑
31 30 nfab 𝑦 { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 }
32 28 31 nffv 𝑦 ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } )
33 nfcv 𝑦 𝑧
34 nfcv 𝑦 𝑅
35 33 34 32 nfbr 𝑦 𝑧 𝑅 ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } )
36 nfv 𝑦 𝑤 𝑅 𝑥
37 36 3 nfan 𝑦 ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 )
38 37 nfex 𝑦𝑤 ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 )
39 35 38 nfbi 𝑦 ( 𝑧 𝑅 ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) ↔ ∃ 𝑤 ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 ) )
40 39 nfal 𝑦𝑧 ( 𝑧 𝑅 ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) ↔ ∃ 𝑤 ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 ) )
41 nfcv 𝑧 𝐹
42 nfab1 𝑧 { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 }
43 41 42 nffv 𝑧 ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } )
44 43 nfeq2 𝑧 𝑦 = ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } )
45 breq2 ( 𝑦 = ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) → ( 𝑧 𝑅 𝑦𝑧 𝑅 ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) ) )
46 45 bibi1d ( 𝑦 = ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) → ( ( 𝑧 𝑅 𝑦 ↔ ∃ 𝑤 ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 𝑅 ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) ↔ ∃ 𝑤 ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )
47 44 46 albid ( 𝑦 = ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) → ( ∀ 𝑧 ( 𝑧 𝑅 𝑦 ↔ ∃ 𝑤 ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧 ( 𝑧 𝑅 ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) ↔ ∃ 𝑤 ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )
48 32 40 47 spcegf ( ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) ∈ V → ( ∀ 𝑧 ( 𝑧 𝑅 ( 𝐹 ‘ { 𝑧 ∣ ∃ 𝑤 ∈ ( 𝐹𝑥 ) ∀ 𝑦 𝜑 } ) ↔ ∃ 𝑤 ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 ) ) → ∃ 𝑦𝑧 ( 𝑧 𝑅 𝑦 ↔ ∃ 𝑤 ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) )
49 6 27 48 mpsyl ( ∀ 𝑤 ∃* 𝑧𝑦 𝜑 → ∃ 𝑦𝑧 ( 𝑧 𝑅 𝑦 ↔ ∃ 𝑤 ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 ) ) )
50 5 49 sylbir ( ∀ 𝑤𝑦𝑧 ( ∀ 𝑦 𝜑𝑧 = 𝑦 ) → ∃ 𝑦𝑧 ( 𝑧 𝑅 𝑦 ↔ ∃ 𝑤 ( 𝑤 𝑅 𝑥 ∧ ∀ 𝑦 𝜑 ) ) )