Description: The Axiom of Separation ax-sep holds in permutation models. Part of Exercise II.9.2 of Kunen2 p. 148.
Note that, to prove that an instance of Separation holds in the model, ph would need have all instances of e. replaced with R . But this still results in an instance of this theorem, so we do establish that Separation holds. (Contributed by Eric Schmidt, 6-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | permmodel.1 | ⊢ 𝐹 : V –1-1-onto→ V | |
| permmodel.2 | ⊢ 𝑅 = ( ◡ 𝐹 ∘ E ) | ||
| Assertion | permaxsep | ⊢ ∃ 𝑦 ∀ 𝑥 ( 𝑥 𝑅 𝑦 ↔ ( 𝑥 𝑅 𝑧 ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | permmodel.1 | ⊢ 𝐹 : V –1-1-onto→ V | |
| 2 | permmodel.2 | ⊢ 𝑅 = ( ◡ 𝐹 ∘ E ) | |
| 3 | fvex | ⊢ ( ◡ 𝐹 ‘ { 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∣ 𝜑 } ) ∈ V | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 ◡ 𝐹 | |
| 5 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∣ 𝜑 } | |
| 6 | 4 5 | nffv | ⊢ Ⅎ 𝑥 ( ◡ 𝐹 ‘ { 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∣ 𝜑 } ) |
| 7 | 6 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦 = ( ◡ 𝐹 ‘ { 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∣ 𝜑 } ) |
| 8 | breq2 | ⊢ ( 𝑦 = ( ◡ 𝐹 ‘ { 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∣ 𝜑 } ) → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 ( ◡ 𝐹 ‘ { 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∣ 𝜑 } ) ) ) | |
| 9 | 8 | bibi1d | ⊢ ( 𝑦 = ( ◡ 𝐹 ‘ { 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∣ 𝜑 } ) → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝑥 𝑅 𝑧 ∧ 𝜑 ) ) ↔ ( 𝑥 𝑅 ( ◡ 𝐹 ‘ { 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∣ 𝜑 } ) ↔ ( 𝑥 𝑅 𝑧 ∧ 𝜑 ) ) ) ) |
| 10 | 7 9 | albid | ⊢ ( 𝑦 = ( ◡ 𝐹 ‘ { 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∣ 𝜑 } ) → ( ∀ 𝑥 ( 𝑥 𝑅 𝑦 ↔ ( 𝑥 𝑅 𝑧 ∧ 𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥 𝑅 ( ◡ 𝐹 ‘ { 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∣ 𝜑 } ) ↔ ( 𝑥 𝑅 𝑧 ∧ 𝜑 ) ) ) ) |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | fvex | ⊢ ( 𝐹 ‘ 𝑧 ) ∈ V | |
| 13 | 12 | rabex | ⊢ { 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∣ 𝜑 } ∈ V |
| 14 | 1 2 11 13 | brpermmodelcnv | ⊢ ( 𝑥 𝑅 ( ◡ 𝐹 ‘ { 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∣ 𝜑 } ) ↔ 𝑥 ∈ { 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∣ 𝜑 } ) |
| 15 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∣ 𝜑 } ↔ ( 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∧ 𝜑 ) ) | |
| 16 | vex | ⊢ 𝑧 ∈ V | |
| 17 | 1 2 11 16 | brpermmodel | ⊢ ( 𝑥 𝑅 𝑧 ↔ 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ) |
| 18 | 17 | bicomi | ⊢ ( 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ↔ 𝑥 𝑅 𝑧 ) |
| 19 | 15 18 | bianbi | ⊢ ( 𝑥 ∈ { 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∣ 𝜑 } ↔ ( 𝑥 𝑅 𝑧 ∧ 𝜑 ) ) |
| 20 | 14 19 | bitri | ⊢ ( 𝑥 𝑅 ( ◡ 𝐹 ‘ { 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∣ 𝜑 } ) ↔ ( 𝑥 𝑅 𝑧 ∧ 𝜑 ) ) |
| 21 | 20 | ax-gen | ⊢ ∀ 𝑥 ( 𝑥 𝑅 ( ◡ 𝐹 ‘ { 𝑥 ∈ ( 𝐹 ‘ 𝑧 ) ∣ 𝜑 } ) ↔ ( 𝑥 𝑅 𝑧 ∧ 𝜑 ) ) |
| 22 | 3 10 21 | ceqsexv2d | ⊢ ∃ 𝑦 ∀ 𝑥 ( 𝑥 𝑅 𝑦 ↔ ( 𝑥 𝑅 𝑧 ∧ 𝜑 ) ) |