Metamath Proof Explorer


Theorem permaxnul

Description: The Null Set Axiom ax-nul holds in permutation models. Part of Exercise II.9.2 of Kunen2 p. 148. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses permmodel.1 𝐹 : V –1-1-onto→ V
permmodel.2 𝑅 = ( 𝐹 ∘ E )
Assertion permaxnul 𝑥𝑦 ¬ 𝑦 𝑅 𝑥

Proof

Step Hyp Ref Expression
1 permmodel.1 𝐹 : V –1-1-onto→ V
2 permmodel.2 𝑅 = ( 𝐹 ∘ E )
3 fvex ( 𝐹 ‘ ∅ ) ∈ V
4 breq2 ( 𝑥 = ( 𝐹 ‘ ∅ ) → ( 𝑦 𝑅 𝑥𝑦 𝑅 ( 𝐹 ‘ ∅ ) ) )
5 4 notbid ( 𝑥 = ( 𝐹 ‘ ∅ ) → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 ( 𝐹 ‘ ∅ ) ) )
6 5 albidv ( 𝑥 = ( 𝐹 ‘ ∅ ) → ( ∀ 𝑦 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦 ¬ 𝑦 𝑅 ( 𝐹 ‘ ∅ ) ) )
7 noel ¬ 𝑦 ∈ ∅
8 vex 𝑦 ∈ V
9 0ex ∅ ∈ V
10 1 2 8 9 brpermmodelcnv ( 𝑦 𝑅 ( 𝐹 ‘ ∅ ) ↔ 𝑦 ∈ ∅ )
11 7 10 mtbir ¬ 𝑦 𝑅 ( 𝐹 ‘ ∅ )
12 11 ax-gen 𝑦 ¬ 𝑦 𝑅 ( 𝐹 ‘ ∅ )
13 3 6 12 ceqsexv2d 𝑥𝑦 ¬ 𝑦 𝑅 𝑥