| Step |
Hyp |
Ref |
Expression |
| 1 |
|
permmodel.1 |
⊢ 𝐹 : V –1-1-onto→ V |
| 2 |
|
permmodel.2 |
⊢ 𝑅 = ( ◡ 𝐹 ∘ E ) |
| 3 |
|
fvex |
⊢ ( ◡ 𝐹 ‘ ∅ ) ∈ V |
| 4 |
|
breq2 |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ ∅ ) → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 ( ◡ 𝐹 ‘ ∅ ) ) ) |
| 5 |
4
|
notbid |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ ∅ ) → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 ( ◡ 𝐹 ‘ ∅ ) ) ) |
| 6 |
5
|
albidv |
⊢ ( 𝑥 = ( ◡ 𝐹 ‘ ∅ ) → ( ∀ 𝑦 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦 ¬ 𝑦 𝑅 ( ◡ 𝐹 ‘ ∅ ) ) ) |
| 7 |
|
noel |
⊢ ¬ 𝑦 ∈ ∅ |
| 8 |
|
vex |
⊢ 𝑦 ∈ V |
| 9 |
|
0ex |
⊢ ∅ ∈ V |
| 10 |
1 2 8 9
|
brpermmodelcnv |
⊢ ( 𝑦 𝑅 ( ◡ 𝐹 ‘ ∅ ) ↔ 𝑦 ∈ ∅ ) |
| 11 |
7 10
|
mtbir |
⊢ ¬ 𝑦 𝑅 ( ◡ 𝐹 ‘ ∅ ) |
| 12 |
11
|
ax-gen |
⊢ ∀ 𝑦 ¬ 𝑦 𝑅 ( ◡ 𝐹 ‘ ∅ ) |
| 13 |
3 6 12
|
ceqsexv2d |
⊢ ∃ 𝑥 ∀ 𝑦 ¬ 𝑦 𝑅 𝑥 |