Metamath Proof Explorer


Theorem permaxnul

Description: The Null Set Axiom ax-nul holds in permutation models. Part of Exercise II.9.2 of Kunen2 p. 148. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses permmodel.1
|- F : _V -1-1-onto-> _V
permmodel.2
|- R = ( `' F o. _E )
Assertion permaxnul
|- E. x A. y -. y R x

Proof

Step Hyp Ref Expression
1 permmodel.1
 |-  F : _V -1-1-onto-> _V
2 permmodel.2
 |-  R = ( `' F o. _E )
3 fvex
 |-  ( `' F ` (/) ) e. _V
4 breq2
 |-  ( x = ( `' F ` (/) ) -> ( y R x <-> y R ( `' F ` (/) ) ) )
5 4 notbid
 |-  ( x = ( `' F ` (/) ) -> ( -. y R x <-> -. y R ( `' F ` (/) ) ) )
6 5 albidv
 |-  ( x = ( `' F ` (/) ) -> ( A. y -. y R x <-> A. y -. y R ( `' F ` (/) ) ) )
7 noel
 |-  -. y e. (/)
8 vex
 |-  y e. _V
9 0ex
 |-  (/) e. _V
10 1 2 8 9 brpermmodelcnv
 |-  ( y R ( `' F ` (/) ) <-> y e. (/) )
11 7 10 mtbir
 |-  -. y R ( `' F ` (/) )
12 11 ax-gen
 |-  A. y -. y R ( `' F ` (/) )
13 3 6 12 ceqsexv2d
 |-  E. x A. y -. y R x