| Step |
Hyp |
Ref |
Expression |
| 1 |
|
permmodel.1 |
|- F : _V -1-1-onto-> _V |
| 2 |
|
permmodel.2 |
|- R = ( `' F o. _E ) |
| 3 |
|
fvex |
|- ( `' F ` ( `' F " ~P ( F ` x ) ) ) e. _V |
| 4 |
|
breq2 |
|- ( y = ( `' F ` ( `' F " ~P ( F ` x ) ) ) -> ( z R y <-> z R ( `' F ` ( `' F " ~P ( F ` x ) ) ) ) ) |
| 5 |
4
|
imbi2d |
|- ( y = ( `' F ` ( `' F " ~P ( F ` x ) ) ) -> ( ( A. w ( w R z -> w R x ) -> z R y ) <-> ( A. w ( w R z -> w R x ) -> z R ( `' F ` ( `' F " ~P ( F ` x ) ) ) ) ) ) |
| 6 |
5
|
albidv |
|- ( y = ( `' F ` ( `' F " ~P ( F ` x ) ) ) -> ( A. z ( A. w ( w R z -> w R x ) -> z R y ) <-> A. z ( A. w ( w R z -> w R x ) -> z R ( `' F ` ( `' F " ~P ( F ` x ) ) ) ) ) ) |
| 7 |
|
vex |
|- z e. _V |
| 8 |
|
dff1o3 |
|- ( F : _V -1-1-onto-> _V <-> ( F : _V -onto-> _V /\ Fun `' F ) ) |
| 9 |
1 8
|
mpbi |
|- ( F : _V -onto-> _V /\ Fun `' F ) |
| 10 |
9
|
simpri |
|- Fun `' F |
| 11 |
|
fvex |
|- ( F ` x ) e. _V |
| 12 |
11
|
pwex |
|- ~P ( F ` x ) e. _V |
| 13 |
12
|
funimaex |
|- ( Fun `' F -> ( `' F " ~P ( F ` x ) ) e. _V ) |
| 14 |
10 13
|
ax-mp |
|- ( `' F " ~P ( F ` x ) ) e. _V |
| 15 |
1 2 7 14
|
brpermmodelcnv |
|- ( z R ( `' F ` ( `' F " ~P ( F ` x ) ) ) <-> z e. ( `' F " ~P ( F ` x ) ) ) |
| 16 |
|
f1ofn |
|- ( F : _V -1-1-onto-> _V -> F Fn _V ) |
| 17 |
1 16
|
ax-mp |
|- F Fn _V |
| 18 |
|
elpreima |
|- ( F Fn _V -> ( z e. ( `' F " ~P ( F ` x ) ) <-> ( z e. _V /\ ( F ` z ) e. ~P ( F ` x ) ) ) ) |
| 19 |
17 18
|
ax-mp |
|- ( z e. ( `' F " ~P ( F ` x ) ) <-> ( z e. _V /\ ( F ` z ) e. ~P ( F ` x ) ) ) |
| 20 |
7 19
|
mpbiran |
|- ( z e. ( `' F " ~P ( F ` x ) ) <-> ( F ` z ) e. ~P ( F ` x ) ) |
| 21 |
15 20
|
bitri |
|- ( z R ( `' F ` ( `' F " ~P ( F ` x ) ) ) <-> ( F ` z ) e. ~P ( F ` x ) ) |
| 22 |
|
df-ss |
|- ( ( F ` z ) C_ ( F ` x ) <-> A. w ( w e. ( F ` z ) -> w e. ( F ` x ) ) ) |
| 23 |
|
fvex |
|- ( F ` z ) e. _V |
| 24 |
23
|
elpw |
|- ( ( F ` z ) e. ~P ( F ` x ) <-> ( F ` z ) C_ ( F ` x ) ) |
| 25 |
|
vex |
|- w e. _V |
| 26 |
1 2 25 7
|
brpermmodel |
|- ( w R z <-> w e. ( F ` z ) ) |
| 27 |
|
vex |
|- x e. _V |
| 28 |
1 2 25 27
|
brpermmodel |
|- ( w R x <-> w e. ( F ` x ) ) |
| 29 |
26 28
|
imbi12i |
|- ( ( w R z -> w R x ) <-> ( w e. ( F ` z ) -> w e. ( F ` x ) ) ) |
| 30 |
29
|
albii |
|- ( A. w ( w R z -> w R x ) <-> A. w ( w e. ( F ` z ) -> w e. ( F ` x ) ) ) |
| 31 |
22 24 30
|
3bitr4i |
|- ( ( F ` z ) e. ~P ( F ` x ) <-> A. w ( w R z -> w R x ) ) |
| 32 |
21 31
|
sylbbr |
|- ( A. w ( w R z -> w R x ) -> z R ( `' F ` ( `' F " ~P ( F ` x ) ) ) ) |
| 33 |
32
|
ax-gen |
|- A. z ( A. w ( w R z -> w R x ) -> z R ( `' F ` ( `' F " ~P ( F ` x ) ) ) ) |
| 34 |
3 6 33
|
ceqsexv2d |
|- E. y A. z ( A. w ( w R z -> w R x ) -> z R y ) |