| Step |
Hyp |
Ref |
Expression |
| 1 |
|
permmodel.1 |
⊢ 𝐹 : V –1-1-onto→ V |
| 2 |
|
permmodel.2 |
⊢ 𝑅 = ( ◡ 𝐹 ∘ E ) |
| 3 |
|
fvex |
⊢ ( ◡ 𝐹 ‘ ( ◡ 𝐹 “ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ) ∈ V |
| 4 |
|
breq2 |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ ( ◡ 𝐹 “ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ) → ( 𝑧 𝑅 𝑦 ↔ 𝑧 𝑅 ( ◡ 𝐹 ‘ ( ◡ 𝐹 “ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 5 |
4
|
imbi2d |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ ( ◡ 𝐹 “ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ) → ( ( ∀ 𝑤 ( 𝑤 𝑅 𝑧 → 𝑤 𝑅 𝑥 ) → 𝑧 𝑅 𝑦 ) ↔ ( ∀ 𝑤 ( 𝑤 𝑅 𝑧 → 𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( ◡ 𝐹 ‘ ( ◡ 𝐹 “ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
| 6 |
5
|
albidv |
⊢ ( 𝑦 = ( ◡ 𝐹 ‘ ( ◡ 𝐹 “ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ) → ( ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 𝑅 𝑧 → 𝑤 𝑅 𝑥 ) → 𝑧 𝑅 𝑦 ) ↔ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 𝑅 𝑧 → 𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( ◡ 𝐹 ‘ ( ◡ 𝐹 “ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
| 7 |
|
vex |
⊢ 𝑧 ∈ V |
| 8 |
|
dff1o3 |
⊢ ( 𝐹 : V –1-1-onto→ V ↔ ( 𝐹 : V –onto→ V ∧ Fun ◡ 𝐹 ) ) |
| 9 |
1 8
|
mpbi |
⊢ ( 𝐹 : V –onto→ V ∧ Fun ◡ 𝐹 ) |
| 10 |
9
|
simpri |
⊢ Fun ◡ 𝐹 |
| 11 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
| 12 |
11
|
pwex |
⊢ 𝒫 ( 𝐹 ‘ 𝑥 ) ∈ V |
| 13 |
12
|
funimaex |
⊢ ( Fun ◡ 𝐹 → ( ◡ 𝐹 “ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ∈ V ) |
| 14 |
10 13
|
ax-mp |
⊢ ( ◡ 𝐹 “ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ∈ V |
| 15 |
1 2 7 14
|
brpermmodelcnv |
⊢ ( 𝑧 𝑅 ( ◡ 𝐹 ‘ ( ◡ 𝐹 “ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ) |
| 16 |
|
f1ofn |
⊢ ( 𝐹 : V –1-1-onto→ V → 𝐹 Fn V ) |
| 17 |
1 16
|
ax-mp |
⊢ 𝐹 Fn V |
| 18 |
|
elpreima |
⊢ ( 𝐹 Fn V → ( 𝑧 ∈ ( ◡ 𝐹 “ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑧 ∈ V ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 19 |
17 18
|
ax-mp |
⊢ ( 𝑧 ∈ ( ◡ 𝐹 “ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑧 ∈ V ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ) |
| 20 |
7 19
|
mpbiran |
⊢ ( 𝑧 ∈ ( ◡ 𝐹 “ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ 𝒫 ( 𝐹 ‘ 𝑥 ) ) |
| 21 |
15 20
|
bitri |
⊢ ( 𝑧 𝑅 ( ◡ 𝐹 ‘ ( ◡ 𝐹 “ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ 𝒫 ( 𝐹 ‘ 𝑥 ) ) |
| 22 |
|
df-ss |
⊢ ( ( 𝐹 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 ∈ ( 𝐹 ‘ 𝑧 ) → 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 23 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑧 ) ∈ V |
| 24 |
23
|
elpw |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝒫 ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑧 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) |
| 25 |
|
vex |
⊢ 𝑤 ∈ V |
| 26 |
1 2 25 7
|
brpermmodel |
⊢ ( 𝑤 𝑅 𝑧 ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑧 ) ) |
| 27 |
|
vex |
⊢ 𝑥 ∈ V |
| 28 |
1 2 25 27
|
brpermmodel |
⊢ ( 𝑤 𝑅 𝑥 ↔ 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 29 |
26 28
|
imbi12i |
⊢ ( ( 𝑤 𝑅 𝑧 → 𝑤 𝑅 𝑥 ) ↔ ( 𝑤 ∈ ( 𝐹 ‘ 𝑧 ) → 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 30 |
29
|
albii |
⊢ ( ∀ 𝑤 ( 𝑤 𝑅 𝑧 → 𝑤 𝑅 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 ∈ ( 𝐹 ‘ 𝑧 ) → 𝑤 ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 31 |
22 24 30
|
3bitr4i |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝒫 ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 𝑅 𝑧 → 𝑤 𝑅 𝑥 ) ) |
| 32 |
21 31
|
sylbbr |
⊢ ( ∀ 𝑤 ( 𝑤 𝑅 𝑧 → 𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( ◡ 𝐹 ‘ ( ◡ 𝐹 “ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 33 |
32
|
ax-gen |
⊢ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 𝑅 𝑧 → 𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( ◡ 𝐹 ‘ ( ◡ 𝐹 “ 𝒫 ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 34 |
3 6 33
|
ceqsexv2d |
⊢ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 𝑅 𝑧 → 𝑤 𝑅 𝑥 ) → 𝑧 𝑅 𝑦 ) |