Metamath Proof Explorer


Theorem permaxpow

Description: The Axiom of Power Sets ax-pow holds in permutation models. Part of Exercise II.9.2 of Kunen2 p. 148. (Contributed by Eric Schmidt, 6-Nov-2025)

Ref Expression
Hypotheses permmodel.1 𝐹 : V –1-1-onto→ V
permmodel.2 𝑅 = ( 𝐹 ∘ E )
Assertion permaxpow 𝑦𝑧 ( ∀ 𝑤 ( 𝑤 𝑅 𝑧𝑤 𝑅 𝑥 ) → 𝑧 𝑅 𝑦 )

Proof

Step Hyp Ref Expression
1 permmodel.1 𝐹 : V –1-1-onto→ V
2 permmodel.2 𝑅 = ( 𝐹 ∘ E )
3 fvex ( 𝐹 ‘ ( 𝐹 “ 𝒫 ( 𝐹𝑥 ) ) ) ∈ V
4 breq2 ( 𝑦 = ( 𝐹 ‘ ( 𝐹 “ 𝒫 ( 𝐹𝑥 ) ) ) → ( 𝑧 𝑅 𝑦𝑧 𝑅 ( 𝐹 ‘ ( 𝐹 “ 𝒫 ( 𝐹𝑥 ) ) ) ) )
5 4 imbi2d ( 𝑦 = ( 𝐹 ‘ ( 𝐹 “ 𝒫 ( 𝐹𝑥 ) ) ) → ( ( ∀ 𝑤 ( 𝑤 𝑅 𝑧𝑤 𝑅 𝑥 ) → 𝑧 𝑅 𝑦 ) ↔ ( ∀ 𝑤 ( 𝑤 𝑅 𝑧𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( 𝐹 ‘ ( 𝐹 “ 𝒫 ( 𝐹𝑥 ) ) ) ) ) )
6 5 albidv ( 𝑦 = ( 𝐹 ‘ ( 𝐹 “ 𝒫 ( 𝐹𝑥 ) ) ) → ( ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 𝑅 𝑧𝑤 𝑅 𝑥 ) → 𝑧 𝑅 𝑦 ) ↔ ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 𝑅 𝑧𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( 𝐹 ‘ ( 𝐹 “ 𝒫 ( 𝐹𝑥 ) ) ) ) ) )
7 vex 𝑧 ∈ V
8 dff1o3 ( 𝐹 : V –1-1-onto→ V ↔ ( 𝐹 : V –onto→ V ∧ Fun 𝐹 ) )
9 1 8 mpbi ( 𝐹 : V –onto→ V ∧ Fun 𝐹 )
10 9 simpri Fun 𝐹
11 fvex ( 𝐹𝑥 ) ∈ V
12 11 pwex 𝒫 ( 𝐹𝑥 ) ∈ V
13 12 funimaex ( Fun 𝐹 → ( 𝐹 “ 𝒫 ( 𝐹𝑥 ) ) ∈ V )
14 10 13 ax-mp ( 𝐹 “ 𝒫 ( 𝐹𝑥 ) ) ∈ V
15 1 2 7 14 brpermmodelcnv ( 𝑧 𝑅 ( 𝐹 ‘ ( 𝐹 “ 𝒫 ( 𝐹𝑥 ) ) ) ↔ 𝑧 ∈ ( 𝐹 “ 𝒫 ( 𝐹𝑥 ) ) )
16 f1ofn ( 𝐹 : V –1-1-onto→ V → 𝐹 Fn V )
17 1 16 ax-mp 𝐹 Fn V
18 elpreima ( 𝐹 Fn V → ( 𝑧 ∈ ( 𝐹 “ 𝒫 ( 𝐹𝑥 ) ) ↔ ( 𝑧 ∈ V ∧ ( 𝐹𝑧 ) ∈ 𝒫 ( 𝐹𝑥 ) ) ) )
19 17 18 ax-mp ( 𝑧 ∈ ( 𝐹 “ 𝒫 ( 𝐹𝑥 ) ) ↔ ( 𝑧 ∈ V ∧ ( 𝐹𝑧 ) ∈ 𝒫 ( 𝐹𝑥 ) ) )
20 7 19 mpbiran ( 𝑧 ∈ ( 𝐹 “ 𝒫 ( 𝐹𝑥 ) ) ↔ ( 𝐹𝑧 ) ∈ 𝒫 ( 𝐹𝑥 ) )
21 15 20 bitri ( 𝑧 𝑅 ( 𝐹 ‘ ( 𝐹 “ 𝒫 ( 𝐹𝑥 ) ) ) ↔ ( 𝐹𝑧 ) ∈ 𝒫 ( 𝐹𝑥 ) )
22 df-ss ( ( 𝐹𝑧 ) ⊆ ( 𝐹𝑥 ) ↔ ∀ 𝑤 ( 𝑤 ∈ ( 𝐹𝑧 ) → 𝑤 ∈ ( 𝐹𝑥 ) ) )
23 fvex ( 𝐹𝑧 ) ∈ V
24 23 elpw ( ( 𝐹𝑧 ) ∈ 𝒫 ( 𝐹𝑥 ) ↔ ( 𝐹𝑧 ) ⊆ ( 𝐹𝑥 ) )
25 vex 𝑤 ∈ V
26 1 2 25 7 brpermmodel ( 𝑤 𝑅 𝑧𝑤 ∈ ( 𝐹𝑧 ) )
27 vex 𝑥 ∈ V
28 1 2 25 27 brpermmodel ( 𝑤 𝑅 𝑥𝑤 ∈ ( 𝐹𝑥 ) )
29 26 28 imbi12i ( ( 𝑤 𝑅 𝑧𝑤 𝑅 𝑥 ) ↔ ( 𝑤 ∈ ( 𝐹𝑧 ) → 𝑤 ∈ ( 𝐹𝑥 ) ) )
30 29 albii ( ∀ 𝑤 ( 𝑤 𝑅 𝑧𝑤 𝑅 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 ∈ ( 𝐹𝑧 ) → 𝑤 ∈ ( 𝐹𝑥 ) ) )
31 22 24 30 3bitr4i ( ( 𝐹𝑧 ) ∈ 𝒫 ( 𝐹𝑥 ) ↔ ∀ 𝑤 ( 𝑤 𝑅 𝑧𝑤 𝑅 𝑥 ) )
32 21 31 sylbbr ( ∀ 𝑤 ( 𝑤 𝑅 𝑧𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( 𝐹 ‘ ( 𝐹 “ 𝒫 ( 𝐹𝑥 ) ) ) )
33 32 ax-gen 𝑧 ( ∀ 𝑤 ( 𝑤 𝑅 𝑧𝑤 𝑅 𝑥 ) → 𝑧 𝑅 ( 𝐹 ‘ ( 𝐹 “ 𝒫 ( 𝐹𝑥 ) ) ) )
34 3 6 33 ceqsexv2d 𝑦𝑧 ( ∀ 𝑤 ( 𝑤 𝑅 𝑧𝑤 𝑅 𝑥 ) → 𝑧 𝑅 𝑦 )